
574

N
N

T
:2

02
2I

P
PA

X
03

6

Nouvelles Méthodes Variationnelles
pour l’inférence et l’apprentissage

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École polytechnique

École doctorale n◦574 École doctorale de mathématiques Hadamard (EDMH)
Spécialité de doctorat : Mathématiques appliquées

Thèse présentée et soutenue à Palaiseau, le 08/06/2022, par

ACHILLE THIN

Composition du Jury :

Gersende Fort
Professeur, Institut de Mathématiques de Toulouse (UMR 5219) Président

Matthieu Jonckheere
Directeur de recherche, LAAS CNRS Rapporteur

Stéphane Mallat
Professeur, École Normale Supérieure (UMR 8548) Rapporteur

Marylou Gabrié
Professeur assistant, École polytechnique (UMR 7641) Examinateur

Arnaud Doucet
Professeur, University of Oxford Directeur de thèse

Éric Moulines
Professeur, École polytechnique (UMR 7641) Directeur de thèse

Acknowledgements
Remerciements

Je te remercie tout d’abord, Éric, pour ces trois années, tout le temps que tu as pris pour me former et
continuer à m’améliorer avec ton envie de toujours aller plus loin et ton engagement total. Et même si
je ne suis “pas très bon en maths”, je te suis vraiment reconnaissant pour tout le temps, toutes nos
sessions de travail qui m’ont vraiment amené dans ta passion du monde de la recherche en maths, avec
l’adrénaline qui va avec ! Enfin, merci pour toutes ces analyses rugbystiques, politiques, écologiques,
sur le vin, la bière, la géographie mondiale ... Ta pluridisciplinarité m’impressionne !

Merci à Arnaud, aussi, malgré une collaboration qui a pris du plomb dans l’aile en mars 2020, j’ai
beaucoup apprécié toutes tes idées et ton enthousiasme, en particulier lors de mes passages à Oxford,
autour d’une bière ou deux.

Merci à mes rapporteurs, Matthieu, Stéphane, d’avoir pris le temps, avec moi, de relire attentivement
ce travail, ce qui m’a permis encore d’avancer ! Merci pour votre temps et votre engagement pour la
recherche. Merci à Gersende et à Marylou d’avoir accepté d’être membre de ce jury, pour m’iader à
conclure ces trois années !

I thank obviously Nikita, for all the projects and late hours we’ve been through together ! It was a
great pleasure to work with you with so much complementarity and this thesis would not have looked
the same (with the same figures and tables in particular) without you ! I am glad we had the chance to
work in real life at the very beginning and the very end of this PhD, I have been truly lucky ! And
thanks Maxim, of course, for all our collaborations.

Merci Alain, pour ton expérience et ta disponibilité. Tu as des convictions fortes pour tout ce que
tu fais et ce fut très riche et apprenant de travailler avec toi.

Merci aussi à Charles, Sylvain, Yazid, pour les différents projets et le temps que l’on a passé
ensemble. Votre présence m’a fait beaucoup de bien et j’ai pu beaucoup apprendre de votre manière de
travailler, avec beaucoup d’enthousiasme, de plaisir et surtout de la bienveillance ! Merci à Pablo et
Valentin, votre fidélité et soutien tout au long de la thèse m’a été précieuse !

Merci aux thésards du labo avec qui j’ai pu échanger souvent, Baptiste, Constantin, Corentin,
Gabriel, Louis, Pierre, Solange, Tom, Vincent, et pour ces bons moments au CIRM ou à Font Romeu
(il nous reste des progrès à faire en espagnol pour la plupart, mais on aura notre revanche avec le taxi).

Merci à tous mes amis d’A Fond Les Ballons, qui m’ont permis de grandir encore plus durant ces
trois dernières années, et de garder des pieds sur terre quand les maths commençaient à prendre un peu
le dessus. Merci en particuliers aux jeunes et parents avec qui j’étais en contact régulier. Merci pour
vos témoignages édifiants et votre confiance, je continue d’apprendre chaque jour avec vous ! Merci aux
accomps aussi pour leurs exemples d’engagement très modélisants, dans le bureau particulièrement.

Merci à Christian, tu m’accompagnes depuis quelques années, et les échanges que nous avons

3

4

m’aident toujours à avancer, en particulier durant ces trois années !

Merci à tous mes amis, Agathe, Alexis (×2), Alvaro, Arnaud, Augustin, Aymard, Basile, Charles,
Cyprien, François, Hortense (×2), Jean-Côme, Jean-Matthieu, Liloïe, Marielle, Maxence, Nicolas,
Pierre-Louis, Sixtine, Stan, pour votre fidélité, pour les rires, pour avoir été présents pour boire des
coups, discuter et me sortir la tête de mes maths !

Merci à Claire, pour ta patience, ta compréhension envers mes soucis bien abstraits durant cette
thèse, et tes efforts personnels pour toujours mieux comprendre ce que je fais ! Ces années auraient été
bien plus difficiles sans ta présence, ton pragmatisme et ta joie. Merci de rayonner comme tu le fais
autour de toi et pour moi en particulier !

Merci à mes grands parents, à mes cousins, oncles et tantes, d’avoir suivi ma progression avec
attention. Merci de votre présence le jour de ma soutenance, qui me fait très chaud au coeur !

Merci enfin à ma famille Papa, Maman, Gabrielle, Marie. Vous aurez partagé mon quotidien pendant
les confinements successifs et m’avez soutenu sans cesse durant ces trois ans ! Merci de votre patience
avec moi, de votre aide indéfectible, et d’avoir partagé mes passions et expériences pour m’évader des
maths pendant ces moments, de m’avoir toujours soutenu, rassuré et donné confiance, même lors de
mes questionnements un peu hasardeux ! J’en suis là vraiment grâce à vous.

Contents

I Introduction 11

1 Introduction et motivation 13
1.1 Introduction générale . 13
1.2 Inférence bayésienne et réseaux de neurones bayésiens 13

1.2.1 Introduction à l’inférence bayésienne . 13
1.2.2 Réseaux de neurones bayésiens . 15

1.3 Modèles génératifs . 16
1.3.1 Modèles fondés sur l’énergie et comment les apprendre 16
1.3.2 Modèles à variables latentes . 17
1.3.3 Auto Encodeurs Variationnels . 19

1.4 Introduction aux chaînes de Markov . 22
1.5 Conclusion et plan . 23
1.6 Résumé des contributions . 24

1.6.1 Méthodes d’échantillonnages et de simulation 24
1.6.2 Modèles génératifs . 26
1.6.3 Inférence approchée en apprentissage profond bayésien 27

2 Introduction and motivation 29
2.1 General introduction . 29
2.2 Bayesian Inference . 29

2.2.1 Bayesian neural networks . 31
2.3 Generative modelling . 31

2.3.1 Energy based models and how to learn them 32
2.3.2 Latent variable models . 33
2.3.3 Variational Auto Encoders . 34

2.4 Introduction to Markov chain Monte Carlo methods 37
2.5 Conclusion and plan . 38
2.6 Contributions . 39

2.6.1 Sampling and simulation methods . 39
2.6.2 Generative models . 41
2.6.3 Application to Bayesian Deep Learning: Efficient Approximate Inference with

Gaussian Stochastic Weight Averaging . 43

3 General Background 45
3.1 Classical estimators of normalizing constants . 45
3.2 High dimensional simulation and sampling techniques 48
3.3 Generative models and approximate simulation . 51

5

6 CONTENTS

II Contributions: Simulation and Sampling methods 69

4 Non-reversible MCMC 71
4.1 Introduction . 71
4.2 (π, S)-reversibility and the Generalized MH rule . 73

4.2.1 Generalized Metropolis-Hastings . 73
4.2.2 GMH for particular proposal maps . 74

4.3 Applications and examples . 76
4.3.1 Generalized Hamiltonian Dynamics . 76
4.3.2 Lifted kernels . 77

4.4 Notations, definitions and general Markov chain theory 80
4.5 Standard reversible MH . 81
4.6 Proofs . 81

4.6.1 Proof of (4.4) . 81
4.6.2 Proof of Proposition 3 . 82
4.6.3 Proof of Theorem 4 . 83
4.6.4 Checking the GMH rule (4.7) . 83
4.6.5 Expressions for a and b . 83
4.6.6 Applications of (4.7): case with densities . 84
4.6.7 Proof of Theorem 6 . 84
4.6.8 Proofs of (4.13) and (4.14) . 86
4.6.9 Proof of (4.17) . 87

4.7 Proofs . 88
4.7.1 Generalized Hamiltonian Monte Carlo algorithms 88
4.7.2 Proof of (4.28) . 94
4.7.3 Implementation details of Example 9 . 95
4.7.4 Proof of Lemma 10 . 95
4.7.5 Lifted acceptance probability with deterministic proposals 96
4.7.6 L2HMC Algorithms . 97

4.8 Experiments . 101

5 NEO: Non Equilibrium Sampling 105
5.1 Introduction . 105
5.2 NEO-IS algorithm . 106
5.3 NEO-MCMC algorithm . 109
5.4 Continuous-time version of NEO and NEIS . 112
5.5 Experiments and Applications . 112
5.6 Conclusion . 116
5.7 Proofs . 117

5.7.1 Additional notation . 117
5.7.2 Proof of (5.3) . 117
5.7.3 Proof of Theorem 29 . 117
5.7.4 Proof of Theorem 30 . 117
5.7.5 Proof of Lemma 31 . 119
5.7.6 Proofs of NEO MCMC sampler . 120

5.8 Continuous-time limit of NEO and NEIS . 122
5.8.1 Proof for the continuous-time limit . 122
5.8.2 NEIS algorithm after [RV19] . 127
5.8.3 NEO with exit times . 128

5.9 Iterated SIR . 130
5.10 Additional Experiments . 131

5.10.1 Normalizing constant estimation . 131

CONTENTS 7

5.10.2 Gibbs inpainting . 132
5.11 NEO and VAEs . 132

5.11.1 Log-likelihood estimation . 132
5.11.2 Definition of a NEO-VAE . 134

6 Ex2MCMC: Sampling through Exploration Exploitation 137
6.1 Introduction . 137
6.2 Ex2MCMC . 138

6.2.1 From Importance Sampling to Sampling Importance Resampling 138
6.2.2 From SIR to iterated Sampling Importance Resampling (i-SIR) 138
6.2.3 Dependent proposals for i-SIR and Ex2MCMC algorithms 140
6.2.4 Dependent Gaussian proposals . 142
6.2.5 Related Work . 143

6.3 Adaptive Ex2MCMC algorithm . 143
6.4 Experiments . 144

6.4.1 Sampling experiments . 145
6.4.2 Sampling from GAN as Energy-based model (EBM) 146

6.5 Conclusions . 148
6.6 Sampling GANs as energy-based model on CIFAR-10 149

6.6.1 DC-GAN . 149
6.6.2 SN-GAN . 149

6.7 Proofs . 150
6.7.1 Proof of Lemma 46 . 151
6.7.2 Proof of Theorem 48 . 151
6.7.3 Proof of Theorem 49 . 154
6.7.4 Proof of Theorem 50 . 156

6.8 Metropolis-Adjusted Langevin rejunevation kernel . 156
6.9 Technical lemmas for Metropolis-Adjusted Langevin kernel 158
6.10 Algorithms . 162
6.11 Numerical experiments . 162

6.11.1 Metrics . 163
6.11.2 Normalizing flow RealNVP . 163
6.11.3 Adaptive strategy for tuning the stepsize in the MALA algorithm 165
6.11.4 High-dimensional Gaussian distribution sampling 165
6.11.5 Mixture of 25 Gaussian distributions in 2d . 165
6.11.6 Distributions with complex geometry . 165
6.11.7 Bayesian Logistic regression . 166
6.11.8 Mixture of two Gaussian distributions . 167
6.11.9 Allen-Cahn equation . 167
6.11.10Sampling from Ill-Conditioned Gaussian distribution 169
6.11.11Sampling from GAN as an Energy-Based Model 169
6.11.12GANs as energy-based models: artificial datasets 169
6.11.13Sampling GANs as energy-based model on CIFAR-10. 170

7 Approximate Inference in Bayesian Deep Learning 171

III Contributions: Generative models 175

8 MetFlow: MCMC & VI 177
8.1 Introduction . 177
8.2 A New Combination Between VI and MCMC . 179

8 CONTENTS

8.2.1 Basics of Metropolis-Hastings . 179
8.2.2 Variational Inference Meets Metropolis-Hastings 179

8.3 MetFlow: MCMC and Normalizing Flows . 182
8.4 Related Work . 184
8.5 Experiments . 184

8.5.1 Synthetic data. Examples of sampling. 185
8.5.2 Deep Generative Models . 185

8.6 Conclusions . 188
8.7 Proofs . 189

8.7.1 Proof of Proposition 65 . 189
8.7.2 Proof of Proposition 66 . 189
8.7.3 Proof of Corollary 68 . 190
8.7.4 Checking the Assumption of Lemma 64 for RWM and MALA algorithms 191

8.8 Reparameterization trick and estimator of the gradient 191
8.8.1 Expression for the reparameterization trick . 191
8.8.2 Unbiased estimator for the gradient of the objective 192
8.8.3 Extension to Hamiltonian Monte-Carlo . 193

8.9 Optimization Procedure . 195
8.9.1 Optimization in the general case . 195
8.9.2 Optimization for MetFlow . 195

8.10 Experiments . 196
8.10.1 Mixture of Gaussians: Additional Results . 197
8.10.2 Funnel distribution . 201
8.10.3 Real-world inference - MNIST . 202
8.10.4 Additional setting of experiments . 203

9 Monte Carlo Variational Auto Encoders 207
9.1 Introduction . 207
9.2 Variational Inference via Sequential Importance Sampling 208

9.2.1 SIS estimator . 208
9.2.2 AIS estimator . 209
9.2.3 SIS-ELBO using unadjusted Langevin . 210

9.3 Variational Inference via Annealed Importance Sampling 211
9.3.1 Differentiating Markov kernels . 211
9.3.2 Differentiable AIS-based ELBO . 213

9.4 Experiments . 215
9.4.1 Methods and practical guidelines . 215
9.4.2 Toy 2D example and Probabilistic Principal Component Analysis 216
9.4.3 Numerical results for image datasets . 218

9.5 Discussion . 220
9.6 Notations and definitions . 222
9.7 Experiences . 222

9.7.1 Toy example . 222
9.7.2 Probabilistic Principal Component Analysis . 222
9.7.3 Additional experimental results . 223

9.8 Proofs . 223
9.8.1 Proof of SIS and AIS Identities . 223
9.8.2 Proof of (9.14) . 227
9.8.3 Proof of Lemma 71 . 228

9.9 ELBO AIS . 228
9.9.1 Construction of the control variates . 228
9.9.2 Discussion of [WKN20b] . 229

CONTENTS 9

A Appendix and supplementary material 253
A.1 Notations, definitions and general Markov chain theory 253

A.1.1 Proof for the AIS estimator . 254

10 CONTENTS

Part I

Introduction

11

Chapter 1

Introduction et motivation

1.1 Introduction générale

L’objectif de l’apprentissage statistique est d’inférer des modèles complexes et en grande dimension
(images, sons, ...). En particulier, nous nous concentrerons dans ce travail sur la modélisation statistique
et probabiliste de ces données (souvent appelé apprentissage machine probabiliste – Probabilistic
Machine Learning).

L’apprentissage machine probabiliste introduit des modèles statistiques, et donc des distributions
de probabilité, qui ne sont souvent connues qu’à une constante de normalisation près. Cette constante
de normalisation, inconnue donc, est aussi appelée énergie libre, par analogie à la physique statistique,
ou évidence (de l’anglais evidence). En réalité, il s’agit plus précisément souvent d’une vraisemblance
marginale, "preuve" du modèle, d’où le nom evidence en anglais. Ce type de modèles est utilisé
pour de nombreuses tâches : de la sélection de modèles, de la quantification d’incertitude, de la
génération de données, où pour inférer et traiter des modèles à variables latentes ou manquantes. Les
problèmes typiques qui apparaissent dans ce cadre sont le calcul ou l’estimation de cette constante de
normalisation, afin d’effectuer par exemple de la sélection de modèle, l’échantillonnage – c’est-à-dire
produire des réalisations – de cette distribution, et d’une manière générale d’intégrales par rapport à
cette distribution afin de calculer des quantités intéressantes, voire effectuer des prédictions. Les trois
problèmes d’apprentissage statistiques considérés dans cette thèse sont

• L’estimation d’incertitude par inférence bayésienne,

• Le Auto Encodeurs Variationnels,

• les Modèles fondés sur l’énergie.

Bien que ces tâches soient très différentes, nous verrons dans l’introduction que les problèmes rencontrés
ont de nombreuses similarités que nous traitons dans cette thèse.

1.2 Inférence bayésienne et réseaux de neurones bayésiens

1.2.1 Introduction à l’inférence bayésienne

L’inférence bayésienne est particulièrement utilisée pour le traitement d’incertitudes dans de nombreux
problèmes d’apprentissage statistique. L’idée fondamentale est de considérer les paramètres du modèle
comme des variables aléatoires dont la distribution est modifiée en fonction des observations (mise
à jour de la distribution a priori à la distribution a posteriori combinant la connaissance initiale du
problème et les données expérimentales).

Les avantages de cette méthode sont de pouvoir quantifier de manière explicite les incertitudes du
modèle, puisque la réponse du modèle est elle-même aléatoire.

13

14 CHAPTER 1. INTRODUCTION ET MOTIVATION

Prenons premièrement l’exemple d’une régression linéaire probabiliste. On modélise donc une
réponse y ∈ R en fonction de variables explicatives x ∈ Rd et de paramètres β ∈ Rd, en spécifiant une
vraisemblance Gaussienne :

p(y | x, β) = (2πσ2)−1/2e−(y−xT β)/(2σ2) ,

où l’on peut supposer la variance σ2 connue. De la même façon, une réponse y ∈ {0, 1} peut être
modélisée avec une régression logistique, en spécifiant la vraisemblance

p(y | x, β) = (1 + e−x
T β)−y(1 + ex

T β)y−1 .

Dans les deux cas, étant donné un ensemble d’observations i.i.d. D = {(xi, yi)}Ni=1, on peut écrire la
vraisemblance p(D | β) =

∏N
i=1 p(yi;xi, β). La spécification bayésienne du modèle requiert le choix

d’une loi a priori de densité p0 sur les paramètres β du modèle, qui représente l’information disponible
sur le modèle avant de recueillir les données expérimentales. L’application de la règle de Bayes permet
de spécifier la distribution a posteriori des paramètres β comme

p(β | D) =
p0(β)p(D | β)

Z
, Z =

∫
p0(β)p(D | β)dβ ∈ (0,∞) , (1.1)

où le terme Z = m(D) =
∫
p0(β)p(D | β)dβ est appelé l’évidence du modèle choisi (il ne dépend que

des observations et du modèle spécifié). En général, l’évidence n’est pas calculable explicitement et
échantillonner la distribution a posteriori requiert l’utilisation de méthodes de Monte Carlo (méthodes
de Monte Carlo par chaînes de Markov, méthodes de Monte Carlo Séquentielles, ou des méthodes
approchées comme échantillonnage préférentiel et rééchantillonnage). Échantillonner cette distribution
a posteriori permet en particulier d’effectuer des prédictions et des moyennes prédictives prenant en
compte l’incertitude sur les paramètres du modèle. En effet, une clef de l’inférence bayésienne en
apprentissage statistique est le calcul et l’approche de la distribution prédictive

p(y∗ | x∗,D) =

∫
p(y∗ | x∗, β)p(β | D)dβ , (1.2)

qui moyenne les prédictions sur tous les paramètres β distribués selon la distribution a posteriori.
Un autre problème central en inférence bayésienne est le choix de modèle. En effet, comme vu plus

haut, la constante de normalisation de la distribution a posteriori peut être vue comme une évidence,
"preuve" du modèle. Considérons par exemple deux familles de modèles paramétriques M1 et M2

pour le même jeu de données D, associés respectivement aux paramètres β1 ∈ Rd1 et β2 ∈ Rd2 , aux
distributions a priori π1, π2 et aux vraisemblances p1(· | β1), p2(· | β2). Alors, on peut comparer les
modèles 1 et 2 avec le facteur de Bayes B12 donné par

B12 =
m(D | M1)π0(M1)

m(D | M2)π0(M2)
, (1.3)

où π0 est une distribution a priori sur les modèles 1 et 2, et

m(D | Mi) =

∫
πi(βi)pi(D | βi)dβi , i ∈ {1, 2} .

Ce ratio B12 est clef pour le choix de modèle entre 1 (si B12 > 1) et 2 (B12 < 1). Cependant, le
calcul de ce ratio ne peut se faire qu’avec les constantes de normalisation des distributions a posteriori
des modèles 1 et 2, ou une estimation fiable et consistante de ces constantes. Pour synthétiser, trois
problèmes majeurs apparaissent ici :

• L’estimation fiable de constantes de normalisation,

• L’échantillonage de lois dont la constante de normalisation est inconnue,

• Le calcul d’intégrale par rapport à une loi dont la constante de normalisation est inconnue.

1.2. INFÉRENCE BAYÉSIENNE ET RÉSEAUX DE NEURONES BAYÉSIENS 15

Figure 1.1: Schéma de la différence entre une réseau de neurones classique et
un réseau de neurones bayésien. Source : https://towardsdatascience.com/
why-you-should-use-bayesian-neural-network-aaf76732c150

1.2.2 Réseaux de neurones bayésiens

Les réseaux de neurones, et l’apprentissage profond, constituent aujourd’hui l’état de l’art dans une
grande variété de tâches, de la régression à la classification en apprentissage supervisé par exemple, dans
des domaines aussi distincts que la vision par ordinateur, la reconnaissance de langage ou le traitement
automatique du langage naturel [GBC16; LBH15; MLY17; KP18; Vou+18]. Avec les nouveaux enjeux
de scalabilité et d’industrialisation, les enjeux d’incertitudes sont au coeur des problématiques actuelles,
et en particulier l’inférence bayésienne et son application aux réseaux de neurones pourrait apporter
une solution fiable. En effet, il est connu que les réseaux de neurones, en particulier profonds, sont trop
confiants en leur prédiction dans certaines tâches [NYC15; DK16; HAB19; Gaw+21]. De nombreux
auteurs ont suggéré une approche bayésienne [Gal16; KG17; McA+17] pour obtenir une estimation
d’incertitude plus fiable. Un réseau de neurones est une fonction complexe Gβ non linéaire, paramétrée
par un vecteur de poids β souvent de très haute dimension. Les paramètres du réseau sont typiquement
les poids synaptiques et les biais des neurones formels qui constituent les éléments de base du réseau.

Étant donné un jeu de données i.i.d. D = {(xi, yi)}Ni=1, un modèle de régression peut donc être
construit similairement à l’exemple précédent, en définissant la vraisemblance

p(y | x, β) = (2πσ2)−1/2e−(y−Gβ(x))/(2σ2) ,

et similairement pour un modèle de classification. En définissant une distribution a priori p0, typique-
ment Gaussienne standard sur les poids du réseau Gβ, on peut effectuer une inférence bayésienne et
calculer la distribution a posteriori des poids du réseau, donnée par

p(β | D) ∝ p0(β)p(D | β) .

On peut aussi faire un lien entre cette distribution a posteriori et un objectif plus “classique” d’apprentissage
statistique, en écrivant l’objectif

L(β;D) = − log p0(β)−
N∑
i=1

log p(yi;xi, β) . (1.4)

Ici apparaît donc encore la nécessité d’échantillonner selon cette distribution, voire d’en calculer une
constante de normalisation.

D’ailleurs, les réseaux de neurones bayésiens profonds ayant donc des paramètres vivant dans un
espace d’état de très haute dimension (plusieurs centaines de millions pour certains ResNets classiques
!), les méthodes d’inférence bayésienne basées sur des méthodes de simulation de type Monte Carlo par

https://towardsdatascience.com/why-you-should-use-bayesian-neural-network-aaf76732c150
https://towardsdatascience.com/why-you-should-use-bayesian-neural-network-aaf76732c150

16 CHAPTER 1. INTRODUCTION ET MOTIVATION

chaîne de Markov classiques ne sont plus directement applicables (le temps de mélange des chaînes
étant très négativement par la dimension de l’espace d’état du modèle, [Izm+21]). D’autre part, le
calcul exact des itérations de ces chaînes est souvent prohibitif et nécessite des adaptations [WT11;
CFG14; BDH17; Cha+18; BDM18], d’où l’intérêt de développer des méthodes approchées, passant à
l’échelle plus facilement [AKW12; GG16; Kha+18; Izm+20; Dus+20; FSG20; Foo+20; Dax+20].

1.3 Modèles génératifs, Modèles fondés sur l’énergie et Auto encodeurs
variationnels

Les modèles génératifs sont au coeur de l’apprentissage statistique probabiliste. Étant donné des
observations D = {xi}Ni=1, les modèles génératifs consistent à l’apprentissage de la distribution à densité
x 7→ p∗(x) dont les données D sont issues. En particulier, le modèle génératif spécifie une classe de
fonction x 7→ pθ(x), paramétrée par θ, et estime le paramètre θ en maximisant la vraisemblance des
observations.

1.3.1 Modèles fondés sur l’énergie et comment les apprendre

Une première classe de modèles génératifs sont les modèles fondés sur l’énergie (Energy Based Models –
EBM). Ce type de modèle, inspiré des distribution de Boltzmann Gibbs en physique statistique, peut
être défini comme

pθ(x) = e−Eθ(x)/Zθ , Zθ =

∫
e−Eθ(x)dx ,

où Eθ est la sortie (scalaire) d’un réseau de neurones prenant en entrée une observation x. Ce modèle
est très flexible puisqu’il ne requiert que la spécification de la log-probabilité non normalisée, appelée
énergie par analogie avec la physique statistique et permet donc de définir très librement des densités
de probabilités sur des espaces d’états potentiellement très complexes.

Choix des paramètres En analyse statistique, le critère de choix des paramètres est souvent donné
par le maximum de vraisemblance. Étant donné un modèle statistique p(x; θ) = pθ(x) et des observations
i.i.d. x1, . . . , xn ∈ Rp selon pθ, la méthode du maximum de vraisemblance consiste à estimer le paramètre
θ en maximisant la vraisemblance des observations p(x1, . . . , xn; θ), i.e.

θ̂?n = arg max
θ∈Θ

n−1
n∑
i=1

log pθ(Xi) = arg max
θ∈Θ

Ln(θ) . (1.5)

Nous sommes donc ici confrontés à un problème d’optimisation. Cependant, nous avons plusieurs
contraintes pour les modèles considérés dans cette thèse. Avec l’avancée de l’apprentissage statistique
et en particulier l’usage courant des réseaux de neurones profonds, les modèles génératifs sont eux
aussi devenus profonds, avec un nombre de paramètres de l’ordre de la centaine de milliers, voire du
million. De plus, le nombre d’observations est très large. Dans le cas de l’application à MNIST, le
jeu de données comporte 50 000 à 60 000 images. Enfin les données en elle mêmes sont de grande
dimension, d’images simples (MNIST, dimension p = 784 par exemple – le nombre de pixels de l’image)
à complexes. Toutes ces contraintes sont autant de pression sur le temps de calcul et l’énergie requise
pour apprendre ces modèles, de façon à passer à l’échelle, à la fois dans la dimension du modèle et
dans le nombre d’observations. En général, cela passe par des solutions d’optimisation par gradient
stochastique, c’est-à-dire que l’on va effectuer une montée de gradient pour maximiser la quantité
n−1

∑n
i=1 log pθ(xi) en θ, en approchant à chaque étape le gradient de cette quantité par un estimateur

1.3. MODÈLES GÉNÉRATIFS 17

(non biaisé idéalement) de cette quantité. Pour les EBM, nous pouvons écrire

Ln(θ) = −n−1
n∑
i=1

log pθ(xi) ,

=n−1
n∑
i=1

Eθ(xi) + logZθ

=n−1
n∑
i=1

Eθ(xi) + log

∫
e−Eθ(x)dx

Le gradient par rapport à θ de cette quantité peut donc être donné par

∇θLn(θ) = n−1
n∑
i=1

∇θEθ(xi)−∇θ
(

log

∫
e−Eθ(x)dx

)

= n−1
n∑
i=1

∇θEθ(xi)−
∫
∇θEθ(x)e−Eθ(x)dx/Zθ ,

= n−1
n∑
i=1

∇θEθ(xi)−
∫
∇θEθ(x) · pθ(x)dx

On voit donc ici deux termes concurrents, à approcher différemment pour l’apprentissage des paramètres
θ. Le premier peut être simplement approché par une estimation stochastique, prenant des "mini-batch"
des observations. Au lieu de calculer à chaque étape le gradient pour chacun des points xi ∈ D, on
tire un sous ensemble de taille b (de l’ordre d’une centaine d’observations typiquement) B de D et on
approche n−1

∑n
i=1∇θEθ(xi) par l’estimateur b−1

∑
xi∈B∇θEθ(xi). Cela permet alors une optimisation

à moindre coût et passant à l’échelle en terme de nombre de données !
En revanche, le second requiert une approximation Monte Carlo d’une intégrale prise par rapport à

une distribution de probabilité dont la constante de normalisation Zθ est inconnue. Une estimation
fiable de cette quantité requiert donc ici, comme c’est le cas classiquement en EBM, un échantillonneur
efficace en grande dimension. Dans ce cas, la méthode classique consiste à utiliser des algorithmes de
type chaîne de Markov Monte Carlo, voir Section 1.4.

1.3.2 Modèles à variables latentes

Récemment, un autre type de modèle a été l’objet de beaucoup d’attention: Les Modèles génératifs
profonds à variables latentes introduits par exemple par [Goo+14a; KW13a].

Ces modèles sont construits de la façon suivante

X = F (Gθ(Z),W) ,

ou de manière équivalente, X ∼ pθ(· | Z). X est ici l’observation que l’on cherche à modéliser. Supposons
par la suite que X ∈ Rp, Z est la variable latente, spécifiée dans le modèles, sorte d’encodage de
l’observation X, et l’on suppose ici Z ∈ Rd. Les hypothèses de ce type de modèle est que la dimension
de Z est plus petite que celle de X, et que Z suit une distribution en général très simple. Gθ est
une fonction complexe, non linéaire, lourdement paramétrée par θ. Typiquement Gθ est un réseau de
neurones profond. Gθ, enfin, est typiquement appelée décodeur (dans les Auto Encodeurs Variationnels)
ou générateur (dans les Réseaux Adverses Génératifs – Generative Adversarial Networks). Enfin, W
est un terme de bruit ajouté à notre modèle probabiliste, et F une fonction composant ce terme et la
réponse déterministe Gθ(Z). D’une manière générale, le modèle statistique est donc spécifié par des
paramètres θ et le modèle joint

pθ(x, z) = pθ(x | z) · pθ(z) , (1.6)

que l’on peut générer en tirant donc successivement Z ∼ pθ(Z), X|Z ∼ pθ(X | Z). Prenons pour

18 CHAPTER 1. INTRODUCTION ET MOTIVATION

Figure 1.2: Exemples d’observations des datasets MNIST (à gauche) et Fashion MNIST (à droite).

exemple un DLGM sur le jeu de données MNIST (resp. Fashion MNIST), constitué d’images en noir et
blanc binarisées de chiffres écrits à la main (resp. d’images de vêtements en noir et blanc binarisées),
voir Figure 1.2. Dans ce cas, nous pouvons écrire

pθ(z) = N (z; 0, I) p(z) = (p1(z), . . . , pD(z)) = Gθ(z)

log pθ(x | z) =
D∑
j=1

log p (xj | z) =
D∑
j=1

xj log pj(z) + (1− xj) log (1− pj(z)) ,

où Gθ est un réseau de neurones prenant en entrée la variable latente Z et renvoyant les paramètres de
la distribution de l’observation X | Z.

Choix des paramètres Si nous appliquons maintenant le critère de maximum de vraisemblance
(1.5) aux modèles génératifs à variables latentes, nous pouvons écrire la vraisemblance des observations
X comme

pθ(x) =

∫
Rd
pθ(x | z)pθ(z)dz . (1.7)

Dans ce cas, la vraisemblance à maximiser se trouve donc sous la forme d’une intégrale, complexe (en
dimension d), qui n’admet pas d’expression explicite.

Dans le cas des modèles génératifs à variables latentes, on est confrontés à un problème supplémen-
taire. Le gradient, pour une observation x, ∇ log pθ(x) n’est pas accessible, car il est à exprimer sous la
forme d’une intégrale intractable. Il est alors intéressant d’appliquer l’identité de Fisher dans ce cas,
qui s’exprime comme ceci

∇θ log pθ(x) =

∫
Rd

∇θpθ(x, z)
pθ(x)

dz

=

∫
Rd
∇θ log pθ(x, z)

pθ(x, z)

pθ(x)
dz

=

∫
Rd
∇θ log pθ(x, z)pθ(z|x)dz . (1.8)

Le gradient de la log-vraisemblance marginale ∇ log pθ(x), intractable, s’exprime alors comme l’intégrale
du gradient de la log-vraisemblance jointe ∇ log pθ(x, z) par la distribution conditionnelle de la variable
latente z par l’observation x (soit la distribution a posteriori de la variable latente étant donné

1.3. MODÈLES GÉNÉRATIFS 19

l’observation). La log-vraisemblance jointe est tractable et peut se calculer facilement dans les modèles
spécifiés. Si l’intégrale ci dessus est toujours intractable, il est en revanche facile maintenant de l’estimer
par méthode Monte Carlo. En effet, si Z1 . . . , Zm ∼ pθ(· | x), un estimateur de∇ log pθ(x) est donc donné
par m−1

∑m
i=1∇ log pθ(x, Zi). Afin d’obtenir des échantillons distribués selon pθ(· | x) ∝ pθ(z)pθ(x, z),

on peut utiliser des méthodes MCMC, comme pour les EBM.
Cependant, un problème majeur peut être soulevé ici. En effet, chaque distribution z 7→ pθ(z | x) doit

être approchée indépendamment, et le nombre d’observations étant grand dans les modèles considérés, le
budget computationnel grandit considérablement ! Ce n’est donc pas l’approche choisie, principalement
pour des raisons computationnelles, par les Auto Encodeurs Variationnels [KW13a].

1.3.3 Auto Encodeurs Variationnels

Les Auto Encodeurs variationnels (VAE) sont un type de DLGM dont l’apprentissage est basé sur de
l’inférence variationnelle. Précisons un peu l’objectif. Afin de pallier à la difficulté de l’estimation du
gradient de la log-vraisemblance, les VAE introduise une famille paramétrique de distributions, appelée
famille variationnelle, Q = {qφ , φ ∈ Φ} paramétrée par un nouveau paramètre φ, et l’on considère alors
l’objectif auxiliaire

L(θ, φ;x) =

∫
Rd

log

(
pθ(x, z)

qφ(z | x)

)
qφ(z | x)dz . (1.9)

Un introduction plus détaillée à l’inférence Variationnelle est donnée en Section 3.1. Cependant, notons
ici que l’on peut réécrire cette quantité comme

L(θ, φ;x) =

∫
Rd

log

(
pθ(z | x)pθ(x)

qφ(z | x)

)
qφ(z | x)dz = log pθ(x)−DKL(qφ(· | x)‖pθ(· | x)) . (1.10)

Cet objectif étant toujours inférieur à la vraisemblance marginale log pθ(x), il est donc appelé borne
inférieure de l’évidence, ou ELBO (Evidence Lower Bound, en anglais). Si ce nouvel objectif est
tractable et optimisable facilement par des méthodes de Monte Carlo, il est différent de la véritable
quantité d’intérêt ici log pθ(x). On peut en effet écrire le gradient par rapport à θ comme

∇θL(θ, φ;x) =

∫
Rd
∇θ log (pθ(x, z)) qφ(z | x)dz , (1.11)

ce qui est proche mais différent de l’expression obtenue avec l’identité de Fisher (1.8).
On peut voir de plus sur l’expression (2.11) que la maximisation de l’ELBO (5.67) optimisera de

manière concurrente les deux quantités d’intérêt

• Cela maximisera approximativement la log-vraisemblance marginale log pθ(x).

• Cela minimisera la divergence DKL(qφ(· | x)‖pθ(· | x)) entre la posterior variationnelle et la vraie
posterior.

Un apport critique de ce nouveau type de modèle est donné de plus par “l’amortissement” de ces
distributions variationnelles. Comme soulevé précédemment, pour chaque observation x, la distribution
a posteriori pθ(z | x) est différente. Ainsi, [KW13a] introduisent une fonction globale x 7→ qφ(· | x) : z 7→
qφ(z | x) en x, où les paramètres φ sont donc partagés. Ainsi, le budget computationnel n’augmente
pas linéairement en le nombre d’observations ! La figure Section 1.3.3 présente un schéma de l’inférence
variationnelle amortie. On appelle ainsi la fonction x 7→ qφ(· | x) qui associe à toute observation une
distribution dans l’espace latent “encodeur”, et symétriquement la fonction z 7→ pθ(x | z) qui associe à
tout point de l’espace latent une distribution dans l’espace des observations “décodeur”.

Si l’optimisation en θ de ce modèle est donc directe avec une approximation par Monte Carlo du
gradient, l’optimisation du paramètre φ requiert plus d’attention.

En effet, on peut en général écrire le gradient de la fonction

φ 7→
∫
h(x, z)qφ(z | x)dz

20 CHAPTER 1. INTRODUCTION ET MOTIVATION

Figure 1.3: Schéma de l’inférence variationnelle amortie des Auto Encodeurs Variationnels, [KW19].

comme ∫
h(x, z)∇ log qφ(z|x)qφ(z|x)dz ,

que l’on peut alors estimer par Monte Carlo. Cependant, cet estimateur basé sur le log-gradient, appelé
estimateur REINFORCE, a souvent une variance importante. Afin d’effectuer une optimisation par gra-
dient stochastique plus efficace, on utilise en général une reparamétrisation du gradient. Supposons donc
qu’il existe pour tout x un difféomorphisme ε 7→ Vφ,x(ε) et une loi de densité g (facile à échantillonner),
tels que

ε ∼ g , z = Vφ,x(ε) ∼ qφ(· | x) . (1.12)

On peut alors reparamétriser l’ELBO de façon à écrire

L(θ, φ;x) =

∫
log

(
pθ(x, Vφ,x(ε))

qφ(Vφ,x(ε) | x)

)
g(ε)dε , (1.13)

où l’intégration est maintenant faite par rapport à une distribution ne dépendant plus des paramètres
π, θ à optimiser, ce qui simplifie considérablement l’estimation Monte Carlo. En général, on choisit
même directement la famille variationnelle en spécifiant g et Vφ,x. Pour l’auto encodeur variationnel
classique [KW13a], par exemple, la prior pθ(z) est alors g la Gaussienne standard sur Rd, et pθ(x | z)
est la distribution paramétrée par les paramètres Gθ(z), où Gθ est un réseau de neurones. De la
même façon, qφ(z | x) = N (z;µφ(x),diag(σ2

φ(x))), où µφ, σφ sont la sortie d’un réseau de neurones de
paramètres φ, construit typiquement symétriquement à Gθ.On peut alors reparamétriser qφ

ε ∼ N (0, I)

z = µφ(x) + σφ(x)� ε ∼ qφ(· | x) .

Ce modèle est cependant limité, c’est à dire que l’ELBO ne propose pas forcément une approx-
imation satisfaisante de la véritable log-vraisemblance que l’on souhaite optimiser. Une première
piste d’amélioration de ce modèle est de rendre plus expressive la famille variationnelle, en proposant
plus qu’une Gaussienne à covariance diagonale. Par exemple, une succession de difféomorphismes,
appelés flots normalisants, voir Section 3.3, permet d’améliorer le modèle, [RM15b; Kin+16a]. D’autres
stratégies sont basées sur de l’inférence variationnelle auxiliaire (AVI), où d’autres variables aléatoires
auxiliaires u sont ajoutées au modèle et à la famille variationnelle afin d’en améliorer l’expressivité,
[SKW15a; RTB16; Maa+16]. Dans ce cas, on étend la distribution variationnelle en définissant

qφ(u, z | x) = qφ(u | x)qφ(z | u, x) ,

1.3. MODÈLES GÉNÉRATIFS 21

ce qui permet alors de définir en pratique une distribution marginale potentiellement très expressive

qφ(z | x) =

∫
qφ(u, z | x)du

De la même façon, on définit le modèle génératif joint

pθ(x, z, u) = pθ(u | x, z)pθ(x, z) .

On introduit alors un nouvel objectif auxiliaire

LAVI(θ, φ;x) =

∫
log

pθ(x, z, u)

qφ(z, u | x)
qφ(z, u | x)dzdu 6 log pθ(x)

Notons que l’on peut toujours réécrire

LAVI(θ, φ;x) +

∫ {∫
log

(
qφ(u | x, z)
pθ(u | x, z)

)
qφ(u | x, z)du

}
qφ(z | x)dz

= L(θ, φ;x)

Ainsi, en pratique, l’ELBO auxiliaire est encore “plus loin” de la log-vraisemblance, cependant
l’expressivité augmentée des distributions variationnelles rendent en général ces modèles plus attractifs,
comme présenté dans [SKW15a; RTB16; Maa+16] et dans [Thi+21b].

Enfin, une autre direction [BGS15; Mad+17; DS18] se base sur l’introduction d’autres objectifs
basés sur des estimateurs de constante de normalisation. En effet, on peut construire un ELBO à
partir de tout estimateur non biaisé de la constante de normalisation pθ(x) de la distribution non
normalisée z 7→ pθ(x, z). Notons par exemple Ẑx(z) un estimateur non biaisé de pθ(x) pour une densité
de proposition qφ(· | x), c’est-à-dire

∫
Rd Ẑx(z)qφ(z | x)dx = pθ(x). Alors, la quantité

L(θ, φ;x) =

∫
Rd

log(Ẑx(z))qφ(z | x)dz 6 log pθ(x) ,

est donc bien un ELBO, par l’inégalité de Jensen et la concavité du logarithme. L’Auto Encodeur
Variationnel correspond alors au cas où on a simplement Ẑx(z) = pθ(x, z)/qφ(z | x), l’estimateur
d’importance à 1 échantillon, qui est évidemment non biaisé. Cependant, on note ici que d’autres
estimateurs peuvent être utilisés dans ce cadre ! De plus, des estimateurs plus performants conduisent
à de “meilleurs” ELBO, dans le sens de plus proches de la log-vraisemblance. En effet, par un
développement de Taylor, on peut écrire

L(θ, φ;x) ≈ log pθ(x)− 1

2
varqφ(·|x)

[
Ẑx(z)

pθ(x)

]
,

voir [Mad+17; DS18] pour plus de détails. En particulier, citons ici l’Auto Encodeur préférentiel
(Importance Weighted Auto Encoder – IWAE), qui se base plutôt sur K échantillons d’importance et
donc sur l’estimateur Ẑx(Z1:K) = K−1

∑K
i=1 pθ(x, Zi)/qφ(Zi | x) et donc sur l’ELBO

LIW(θ, φ;x) =

∫
log

(
K−1

K∑
i=1

pθ(x, zi)

qφ(zi | x)

)
K∏
i=1

qφ(zi | x)dzi .

Un point crucial encore de cet ELBO est évidemment que l’estimateur de la constante de normalisation
pθ(x) doit être différentiable, afin de pouvoir ensuite appliquer des algorithmes d’optimisation par
gradient stochastique. Le développement de tels estimateurs de constantes et des ELBO associés est
aussi une part importante du travail de cette thèse.

22 CHAPTER 1. INTRODUCTION ET MOTIVATION

1.4 Introduction aux chaînes de Markov

Les chaînes de Markov sont une classe de processus stochastiques utilisés couramment pour la modélisa-
tion de phénomènes aléatoires. Une chaîne de Markov (Xk)k∈N est une séquence de variables aléatoires
définies sur un espace filtré (Fk)k∈N telle que la loi de Xn+1 conditionnellement à la filtration Fn est
égale à la loi de Xn+1 conditionnellement à Xn, P-presque sûrement. En d’autres termes, cela signifie
qu’un processus stochastique à temps discret possède la propriété de Markov si le passé et le futur
sont indépendants étant donné le présent. [Dou+18] comprend une bibliographie très large pour les
aspects théoriques de chaînes de Markov. Les chaînes de Markov sont enfin utilisées très largement
dans la modélisation de processus de files d’attente ou de stockage, dans la modélisation de séries
temporelles (en particulier en finance). Les chaînes de Markov peuvent enfin aussi être utilisées afin de
construire un algorithme permettant d’échantillonner selon une distribution cible π, souvent connue à
une constante de normalisation près. Nous rentrons alors dans le cadre des algorithmes de chaînes de
Markov Monte Carlo (MCMC), devenus très populaires et largement répandus ces dernières années, et
source de beaucoup d’attention. Cette thèse s’inscrit encore dans ce cadre.

Introduisons maintenant quelques notations. Dans cette thèse, nous étudions les chaînes de Markov
à valeurs dans Rd dotées de la sigma-algèbre de Borel B(Rd). Une chaîne de Markov homogène (Xk)k∈N
est caractérisée par son noyau R : Rd × B(Rd)→ [0] 1 qui satisfait

1. Pour tout x ∈ Rd, R(x, ·) est une mesure de probabilité sur B(Rd),

2. Pour tout A ∈ B(Rd) x 7→ R(x,A) est une fonction mesurable.

Pour toute mesure de probabilité µ sur B(Rd) et A ∈ B(Rd), on désigne par µR(A) =
∫
Rd R(x,A)µ(dx)

et pour tout k ∈ N, x ∈ Rd, Rk+1(x,A) =
∫
Rd R(x,dy)Rk(y,A). Pour une mesure de probabilité µ sur

B(Rd) et f une fonction µ-intégrable, µ(f) =
∫
Rd f(x)µ(dx). Pour x ∈ Rd et f intégrable sous R(x, ·),

on dénote par Rf(x) =
∫
Rd R(x,dy)f(y).

Une des questions centrales en MCMC est de déterminer si le noyau R admet comme unique
distribution invariante π, c’est-à-dire πR = π. En d’autres termes, cela signifie que l’application du noyau
R à un échantillon X ∼ π résultera en un échantillon Y aussi distribué selon π. Une propriété impliquant
cette invariance est la réversibilité, soit pour tout A,B ∈ B(Rd),

∫
A π(dx)R(x,B) =

∫
B π(dx)R(x,A).

Cette propriété est donc plus forte que la simple invariance et sera discutée en particulier dans la
Section 2.6.1.

En particulier, l’invariance est une propriété clef pour assurer la convergence de la distribution des
échantillons (partant d’une distribution initiale µ0 arbitraire) µ0R

n produits par une chaîne de Markov
vers la distribution cible π, ce qui permet alors d’utiliser directement les algorithmes MCMC pour
produire des échantillons. En particulier, les algorithmes de Metropolis Hastings donnent une recette
générale afin de construire de tels noyaux. Détaillons ici la Marche aléatoire de Metropolis (Random
Walk Metropolis, RWM) qui est l’un des exemples les plus simples. Supposons ici que la distribution
π admette une densité par rapport à la mesure de Lebesgue, aussi dénotée π par abus de notation.
L’algorithme peut se définir comme ceci, pour un certain écart type σ > 0 et une distribution initiale
µ0:

• Tirer X0 selon µ0,

• Pour k > 0, définir Yk+1 = Xk +σWk+1, où Wk est un vecteur Gaussien standard en dimension d,

• Avec une probabilité min(1, π(Yk+1)/π(Xk)), accepter la proposition Yk+1, c’est-à-dire fixer
Xk+1 = Xk. Sinon, rejeter la proposition et fixer Xk+1 = Xk.

Il est possible de définir le noyau R correspondant à cet algorithme, donné pour tout x ∈ Rd,A ∈ B(Rd)

1.5. CONCLUSION ET PLAN 23

par :

R(x,A) =

∫
A

min

(
1,
π(y)

π(x)

)
e−‖x−y‖

2/2σ2

(2πσ2)d/2
dy+

δx(A)

∫
Rd

{
1−min

(
1,
π(y)

π(x)

)}
e−‖x−y‖

2/2σ2

(2πσ2)d/2
dy . (1.14)

On peut alors vérifier facilement la réversibilité de π par rapport à R. Si cet algorithme est très simple
de compréhension et d’utilisation, beaucoup de développements et de raffinement se basant sur des
idées similaires mais utilisant des propositions plus sophistiquées ont été étudiés et proposés, dans les
travaux précédant et dans cette thèse.

1.5 Conclusion et plan

Les travaux de cette thèse sont donc divers et peuvent se décomposer en trois parties

• Développer des méthodes efficaces d’échantillonage et de simulation de distributions complexes,
potentiellement à dimension élevée, connues à une constante de normalisation près.

• Établir de nouveaux algorithmes pour l’apprentissage de modèles génératifs complexes, pour la
simulation approchée d’une distribution de probabilité, ou pour des modèles génératifs profonds à
variables latentes.

• Appliquer des méthodes de simulation approchée pour l’inférence de réseaux de neurones bayésiens,
proposant une approche efficace à l’apprentissage profond bayésien.

24 CHAPTER 1. INTRODUCTION ET MOTIVATION

1.6 Résumé des contributions

1.6.1 Méthodes d’échantillonnages et de simulation

Trois travaux de cette thèse développent des méthodes d’échantillonage et de simulation avec des
méthodes de Monte Carlo par chaîne de Markov en particulier.

MCMC non réversible avec des transformations inversibles: Une recette complète avec
des garanties de convergences L’algorithme de Metropolis-Hastings (MH), le cheval de bataille
de l’échantillonnage de Monte-Carlo par chaîne de Markov, fournit une recette simple pour construire
des noyaux de Markov réversibles.

Cependant, si la réversibilité est une propriété facile à mettre en œuvre généralement requise dans la
plupart des algorithmes MCMC utilisés (cela est directement vérifié dans les algorithmes MH), elle n’est
pas nécessairement souhaitable du point de vue des performances. En effet, elle fournit une condition
plus forte que l’invariance nécessaire, ce qui peut avoir un impact non négligeable sur la corrélation des
échantillons produits. Cette idée a suscité un intérêt récent pour la conception de noyaux ne vérifiant
cette propriété, tout en satisfaisant l’invariance. De plus, de nouveaux noyaux MH ont également
été introduits, qui reposent sur des transformations déterministes inversibles complexes, généralement
fortement paramétrées : [SZE17; LHS17a; Thi+20b; Nek+20]. Ce travail a deux objectifs. Le premier
est de développer une recette simple et complète pour un certain type de noyaux MH non réversibles
qui satisfont toujours l’invariance par rapport à une certaine distribution cible et tous les résultats
classiques de convergence qui résultent de la littérature MH habituelle [Dou+18], ce qui conduit à un
ensemble de conditions simples et pratiquement vérifiables. De plus, nous appliquons cette théorie et
les résultats de convergence à différents types de noyaux MH basés sur ces transformations complexes,
introduits dans ce papier ou dans la littérature précédente [SZE17; LHS17a].

Une illustration de notre travail avec l’échantillonneur NICE est donné sur la Figure 2.3. L’échantillonneur
NICE est une généralisation de l’algorithme Hamiltonian Monte Carlo (HMC) basée sur des réseaux
de neurones appris de manière adaptative. Si de manière classique cet algorithme est réversible, nous
prouvons que nous pouvons le rendre irréversible de plusieurs manières différentes et en démontrons les
effets sur la figure.

La réversibilité et l’irréversibilité sont ici induites par le rafraîchissement entre chaque étape du
terme de quantité de mouvement de la distribution cible étendue. Le rafraîchissement complet signifie
qu’à chaque étape, nous rafraîchissons complètement en rééchantillonnant une la quantité de mouvement
selon la marginale e−K(p), le rafraîchissement complet aléatoire signifie que nous ne le rafraîchissons
complètement qu’avec une certaine probabilité β < 1, et la persistance signifie que nous ne rafraîchissons
la quantité de mouvement que partiellement, avec un noyau autorégressif Gaussien (l’énergie cinétique
K(p) étant ici choisie quadratique, de manière classique).

NEO: Echantillonnage hors équilibre sur l’orbite d’une transformation déterministe Nous
proposons avec NEO un nouvel estimateur de constantes de normalisation. À partir d’une transformation
déterministe et inversible T bien choisie, NEO propose d’estimer les constantes de normalisation
en échantillonnant des particules puis en les transportant par T vers les régions qui sont les plus
significatives pour la distribution cible π. Pour garantir l’absence de biais de l’estimateur, nous dérivons
une formule permettant de combiner la contribution de chaque point le long de l’orbite. Ceci fournit
donc un algorithme pour un nouvel estimateur. Nous donnons aussi quelques critères afin d’évaluer la
performance de cet estimateur et guider son réglage, en particulier avec un homologue de la variance
d’un estimateur d’importance. La transformation dans les expériences est un opérateur Hamiltonien
dissipatif, permettant d’informer les trajectoires avec la distribution cible.
Un échantillonneur NEO-MCMC est aussi dérivé de cet estimateur. Cet échantillonneur est directement
comparable à la méthode HMC en termes de complexité et se montre compétitif sur plusieurs exemples
jouets et réels.

1.6. RÉSUMÉ DES CONTRIBUTIONS 25

10 5 0 5 10
Reversible

10

5

0

5

10

NICE with full refresh
Accepted
Target

10 5 0 5 10
Non-reversible

10

5

0

5

10

NICE with randomized full refresh
Accepted
Target

10 5 0 5 10
Non-reversible

10

5

0

5

10

NICE with persistence
Accepted
Target

Figure 1.4: Effet de la non réversibilité sur un algorithme MCMC.

Nous présentons dans les figures suivantes une illustration de ce travail. La Figure 5.1 montre com-
ment l’estimateur évolue en termes de longueur de trajectoire par rapport à un estimateur d’importance
classique. Nous montrons, pour différentes valeurs des hyperparamètres, comment la variance effective
diminue avec la longueur de la trajectoire par rapport à la variance de l’estimateur d’importance.

0 5 10 15 20 25
2.5

2.0

1.5

1.0

0.5

0.0 = 0.1
 = 1.0
 = 2.0

Figure 1.5: À gauche: Variance de NEO en fonction de la longueur de la trajectoire K sur l’orbite
comparé à la variance (en rouge) de l’échantillonneur préférentiel avec (K + 1) échantillons en échelle
logarithmique (la variance la plus basse est à privilégier). De gauche à droite après: Quatre exemples
de trajectoires permettant de calculer l’estimateur de la constante de normalisation selon le réglage
du terme de friction γ (de gauche à droite, γ = 0.1, 1, 2), sur une distribution cible mélange de 4
Gaussiennes.

Ex22MCMC: Échantillonnage avec Exploration/Exploitation Une critique commune envers
les algorithmes MCMC est l’importance de l’auto-corrélation des échantillons produits par la chaîne
est élevée et difficile à réduire, de par la proposition de mouvements seulement “locaux”. D’un autre
côté, d’autres méthodes, comme l’échantillonnage préférentiel et rééchantillonnage (i-SIR – et d’une
manière générale les méthodes pseudo-marginales) ne sont basées sur des propositions de mouvements
"globaux". Cependant, ces méthodes ont beaucoup de mal lorsque la dimension augmente. L’algorithme
Ex2MCMC est un nouveau type de noyau MCMC, qui combine plusieurs propositions globales et des
déplacements locaux, visant à retenir le meilleur des deux. À cet effet, plusieurs idées sont développées.
La première est de proposer un algorithme combinant le i-SIR composé avec quelques mouvements
locaux du noyau pour “rafraîchir” la particule échantillonnée, typiquement des noyaux de Langevin
Monte Carlo. Dans ce cas, nous montrons que l’hypothèse nécessaire aux résultats d’ergodicité et
d’ergodicité géométrique de l’échantillonneur i-SIR s’affaiblit.

De plus, en haute dimension, l’algorithme i-SIR est souvent mis en difficulté car il ne propose

26 CHAPTER 1. INTRODUCTION ET MOTIVATION

Figure 1.6: Sortie consécutive des différentes étapes d’un flot normalisant (en haut) par rapport aux
étapes de MetFlow construit avec la même architecture de flot normalisant. A gauche : prior Gaussienne
standard, puis l’effet successifs des cinq transformations qui constituent le flot.

que des mouvements globaux non informés, ce qui réduit drastiquement le temps de mixage. Afin
d’essayer d’atténuer ce comportement, une recette complète sur la façon d’échantillonner avec des
propositions i-SIR corrélées est développée. Elle permet notamment de n’échantillonner que quelques
points d’exploration globaux et de rafraîchir également en explorant localement la région, tout en
bénéficiant de la parallélisation massive possible avec le noyau i-SIR. Enfin, nous proposons également
une contrepartie adaptative du noyau Ex2MCMC appelée FlEx2MCMC. FlEx2MCMC est basé sur
des flots normalisants, appris de manière adaptative durant l’échantillonnage, qui permet donc de
d’améliorer les propositions.

1.6.2 Modèles génératifs

Nous développons dans cette partie deux modèles génératifs, liés aux auto encodeurs ou aux flots
normalisants.

MetFlow: Une nouvelle approche pour combiner Inférence Variationnelle, flots normal-
isants et Monte Carlo par chaînes de Markov Nous développons ici une méthode pour combiner
à la fois l’inférence variationnelle et les algorithmes MCMC, en particulier les algorithmes MCMC avec
des étapes de rejet de Metropolis-Hastings, qui sont cruciales pour satisfaire les conditions d’invariance
par rapport à la distribution cible. Cela permet de construire des familles variationnelles basées sur
la distribution obtenue après quelques étapes MCMC appliquées sur une distribution initiale dont les
paramètres peuvent aussi être appris, ce qui augmente considérablement leur expressivité.

De plus, nous montrons que les paramètres du noyau MCMC peuvent être optimisés à l’aide d’un
nouveau critère de type ELBO. Ce critère permet ainsi d’introduire de nouveaux noyaux MCMC basés
sur des propositions de flots normalisants, appelés Metropolized Flows, ou MetFlow. MetFlow propose
donc une nouvelle façon d’échantillonner en utilisant flots normalisants et MCMC avec une façon
automatique d’optimiser les paramètres des noyaux MCMC par différenciation automatique avec un
critère d’inférence variationnelle. Ces deux cas peuvent être illustrés sur la Figure 8.6, qui démontre
clairement comment les noyaux MetFlow sont capables de passer outre certaines des contraintes
topologiques auxquelles sont soumis les flots normalisants et à quel point une famille variationnelle
basée sur MetFlow peut être expressive.

Monte Carlo Auto Encodeur Variationnel Nous développons ici une nouvelle manière d’apprendre
les DLGM, en particulier en se basant sur des estimateurs de constante de normalisation état-de-l’art
pour les modèles génératifs, Annealed Importance Sampling et Sequential Importance Sampling [GBC16].
Afin de pouvoir différencier l’ELBO basé sur ces estimateurs performants, nous développons dans

1.6. RÉSUMÉ DES CONTRIBUTIONS 27

ce cadre une forme particulière d’Inférence Variationnelle Auxiliaire, avec des noyaux de Markov
implémentés en particulier avec des dynamiques de Langevin. Cela mène à la définition des Monte
Carlo Auto Encodeurs Variationnels, qui se montrent compétitifs sur de nombreux exemples par rapport
à des modèles état-de-l’art.

1.6.3 Inférence approchée en apprentissage profond bayésien

Cette partie développe la solution proposée pour de l’inférence approchée dans des réseaux de neurones
profonds dans le cadre de la compétition NeurIPS Inférence approchée en apprentissage bayésien profond
(Approximate Inference in Bayesian Deep Learning)1.

En particulier, nous développons une généralisation de la méthode de moyenne de poids stochastique
avec des Gaussiennes, en utilisant en particulier des dynamiques de Langevin avec gradient stochastique,
ce qui nous permet d’approcher la distribution a posteriori des poids du réseau par une mixture de
distributions Gaussiennes qui se montre compétitive pour approcher la véritable distribution a posteriori
des poids et la distribution prédictive correspondante par un étalon fourni par de très longues chaînes
de Markov produites par l’algorithme de Hamiltonian Monte Carlo.

1https://izmailovpavel.github.io/neurips_bdl_competition/

https://izmailovpavel.github.io/neurips_bdl_competition/

28 CHAPTER 1. INTRODUCTION ET MOTIVATION

Chapter 2

Introduction and motivation

2.1 General introduction

The objective of machine learning is to propose models for data in large dimensions (images, sounds,
...). In particular, we will focus in this work on the statistical and probabilistic modeling of these
complex data (often called probabilistic machine learning).Generally speaking, probabilistic machine
learning introduces statistical models, and therefore probability distributions, which are often known
only to up to some normalizing constant. This normalizing constant is also called free energy, by
analogy with statistical physics, or evidence. More precisely, it is often a marginal likelihood, the
"proof" of the model, hence the name evidence. This type of models can be used for many tasks: model
selection, uncertainty quantification, data generation, or to infer and process models with latent or
missing variables. Typical problems that arise in this context are the computation or estimation of this
normalization constant (in order to perform for example model selection), the sampling (i.e. extracting
samples) of this distribution, and in general the computation of expectations, integrals, with respect
to this distribution (in order to compute interesting quantities from our model, or even to perform
predictions). In particular, let us introduce here three typical machine learning tasks that we focus on
in this thesis:

• Uncertainty quantification via Bayesian inference,

• Variational Auto Encoders,

• Energy based models.

Although theses tasks may be quite different, we will see that the problems that they raise are very
similar. This thesis aims at contributing to develop novel methods suitable for those problems.

2.2 Bayesian Inference

Bayesian inference is particularly used for uncertainty quantification in machine learning. The core
idea is to treat the parameters of the model as random variables whose distribution will be modified by
the observations collected (update of the distribution a priori to a distribution a posteriori combining
prior knowledge on the problem and experimental data).

The advantages of this method are to be able to quantify explicitly the uncertainties of the model,
since the response of the model is itself random.

Let us first consider a coin, which we ignore if it is biased or not. We could estimate the probability
of falling on heads directly by making n throws and calculating the empirical proportion, or consider the
probability of falling on heads β as a random variable between 0 and 1, with a uniform prior distribution
π for example. The probability that a throw lands on heads, given the probability β, is thus a Bernoulli

29

30 CHAPTER 2. INTRODUCTION AND MOTIVATION

of parameter β. We can compute the distribution after n throws Y1, . . . , Yn using Bayes’ formula:

π(β | y1, . . . , yn) =
π(β)p(y1, . . . , yn | β)∫
π(β)p(y1, . . . , yn | β)dβ

. (2.1)

The term Z = m(y1, . . . , yn) =
∫
π(β)p(y1, . . . , yn | β)dβ is called the evidence of the chosen model (it

depends only on the observations and the specified model).
The Bayesian approach is also crucial in machine learning applications. Typically, letD = {(xi, yi}Ni=1

be some observations, where xi ∈ Rd are the covariates associated yi. Suppose we are given as well a
statistical model and a likelihood p(y | x, β) = l(y;x, β) “explaining” the observations. Typically, for
the Gaussian regression model when y is continuous in R

p(y | x, β) = (2πσ2)−1/2e−(y−xT β)2/(2σ2) ,

where we can suppose the variance σ2 known. For binary data y ∈ {0, 1}, the logistic regression specifies
the likelihood

p(y | x, β) = (1 + e−x
T β)−y(1 + ex

T β)y−1 .

In both cases, given a set of observations i.i.d. D = {(xi, yi)}Ni=1, we can write the likelihood p(D | β) =∏N
i=1 p(yi | xi, β). We specify the bayesian model by the choice of a prior distribution with density p0

on the parameters β, which represents the available knowledge on the model before collecting data.
Again, applying Bayes rule allows to compute the posterior distribution of the parameters β as

p(β | D) =
p0(β)p(D | β)

Z
, Z =

∫
p0(β)p(D | β)dβ ∈ (0,∞) , (2.2)

wit Z = m(D) =
∫
p0(β)p(D | β)dβ the evidence.

In general, the evidence is not computable explicitly and sampling according to the posterior
distribution has to rely on Monte Carlo methods (Markov chain Monte Carlo, Sequential Monte Carlo,
or approximate methods, such as sampling importance resampling). Moreover, sampling according to
this posterior distribution allows in particular to compute prediction or predictive means taking into
account the uncertainty onthe parameters of the model. Indeed, a key of Bayesian inference in machine
learning is the computation of the predictive distribution

p(y∗ | x∗,D) =

∫
p(y∗ | x∗, β)p(β | D)dβ . (2.3)

This predictive distribution obtained via the marginalization of the posterior thus takes into account
the uncertainty linked to the model and the data.

Moreover, an important part of Bayesian analysis is the model choice. Indeed, as seen above, the
normalizing constant of the a posteriori distribution is interpretable as evidence of the model. Let us
suppose one wants to choose between to different parametric modelsM1 andM2 for the same data set
D, associated respectively to the parameters β1 ∈ Rd1 and β2 ∈ Rd2 , to the distributions π1, π2 and to
the likelihoods p1(· | β1), p2(· | β2), Then, one can compare models 1 and 2 with the Bayes factor B12

given by

B12 =
m(D | M1)π0(M1)

m(D | M2)π0(M2)
, (2.4)

where π0 is a prior distribution on models 1 and 2 (e.g. π0(M1) = p1, π0(M2) = 1− p1), and

m(D | Mi) =

∫
πi(βi)pi(D | βi)dβi , i ∈ {1, 2} .

Above 1, the Bayes factor will tend to lean towards model 1, and below 1 towards model 2. This ratio
relies entirely on the normalizing constant of the distribution defined by the statistical model, and
particular attention is given in this thesis to the computation of normalizing constants. To synthesize,
three major problems arise here

2.3. GENERATIVE MODELLING 31

• The estimation of normalizing constants,

• Sampling distributions known up to a normalizing constant

• Computing expectations w.r.t. distributions known up to a normalizing constant

2.2.1 Bayesian neural networks

Neural networks, and deep learning in particular, have been state-of-the-art in numerous regression
and classification tasks in the recent years and in many different fields, such as computer vision, or
natural language processing [GBC16; LBH15; MLY17; KP18; Vou+18]. However, a proper uncertainty
quantification for epistemic uncertainty and generalization is still crucial for a safe deployment of
deep learning. Indeed, it has been put forward that neural networks, especially when deep, might be
overconfident in their predictions in some types of tasks [NYC15; DK16; HAB19; Gaw+21]. This is
of course problematic in a large scale deployment of deep learning. Many authors have suggested a
Bayesian approach [GG16; Gal16; KG17; McA+17] for a more trustable uncertainty quantification.

A neural network is a complex non linear function Gβ , parameterized by a vector of weights β often
high dimensional. Typically the parameters are the synaptic weights and the bias of the neurons which
constitutes the base elements of the network.

Given a dataset D = {(xi, yi}Ni=1, a regression model may be built similarly than before, specifying
the likelihood

p(y | x, β) = (2πσ2)−1/2e−(y−Gβ(x))2/(2σ2) ,

and similarly for a binary classification model. Defining a prior distribution with weights p0, typically
standard normal, on the weights of the network Gβ, one can then perform Bayesian inference and
compute the posterior distribution given by

p(β | D) ∝ p0(β)p(D | β) .

We can also link this distribution with a more classical objective of machine learning by writing the
equivalent loss

L(β;D) = − log p(β)−
N∑
i=1

log p(yi;xi, β) . (2.5)

Here rises again the problem of sampling according to this distribution.
The parameters of deep neural networks living in state spaces of high dimensions (hundreds of

millions for some classical ResNets !), classical Bayesian methods, based on simulation methods such as
MCMC are not directly applicable [Izm+21]. Moreover, the exact computation of the iteration of these
chains is prohivitive and requires adaptations [WT11; CFG14; BDH17; Cha+18; BDM18], hence the
need for approximate methods, more scalable [AKW12; GG16; Kha+18; Izm+20; Dus+20; FSG20;
Foo+20; Dax+20].

2.3 Generative modelling, Energy based models and Variational Auto
Encoders

Generative models are at the heart of statistical modeling. Given a dataset D = {xi}Ni=1, generative
models aim at learning the distribution p∗ from which the data D were sampled. Practically, generative
models specify some parametric distribution with density x 7→ pθ(x), parameterized by θ, and estimates
θ, typically by maximizing the likelihood of the observations.

32 CHAPTER 2. INTRODUCTION AND MOTIVATION

2.3.1 Energy based models and how to learn them

A first class of generative models are the Energy based models (EBM). These types of models, inspired
by Boltzmann Gibbs distribution from statistical physics, can be defined as

pθ(x) = e−Eθ(x)/Zθ , Zθ =

∫
e−Eθ(x)dx ,

where Eθ is the scalar output of a neural network taking as input an observation x. This model can be
very flexible in its specification as it only requires the unnormalized log-probability, called energy by
analogy with statistical physics, and thus allow the definition of probability densities on potentially
very complex state spaces.

How to tune the parameters of the model In statistical analysis, the choice of the parameters
is often given by the maximum likelihood estimator. Given a statistical model p(x; θ) = pθ(x) and
independent observations identically distributed x1, . . . , xn ∈ Rp according to pθ, the idea is to choose
the θ parameters maximizing the likelihood p(x1, . . . , xn | θ), i.e.

θ̂?n = arg max
θ∈Θ

n−1
n∑
i=1

log pθ(xi) = arg max
θ∈Θ

Ln(θ) , (2.6)

where we defined

Ln(θ) = −n−1
n∑
i=1

log pθ(xi) (2.7)

We are thus confronted here with an optimization problem. However, we have several constraints for
the models considered in this thesis. On the one hand, the models considered will generally be specified
by deep neural networks, thus with a number of parameters of the order of hundreds of thousands, or
even a million. Moreover, the number of observations is very large. In the case of the application to
MNIST dataset, the data set contains 50,000 to 60,000 images. Finally, the data itself is very large,
from simple images (MNIST, dimension p = 784 for example – the number of pixels in the image) to
complex images for example. All these constraints impact the computation time and energy required
to learn these models, in the most scalable way possible. In general, one opts for stochastic gradient
optimization, that is gradient ascent of the quantity Ln(θ), by approximating the gradient at each step
by an (unbiased) estimator. For EBM, we can write

Ln(θ) = −n−1
n∑
i=1

log pθ(xi) ,

=n−1
n∑
i=1

Eθ(xi) + logZθ

=n−1
n∑
i=1

Eθ(xi) + log

∫
e−Eθ(x)dx

The gradient w.r.t. θ of this quantity can be given by

∇θLn(θ) = n−1
n∑
i=1

∇θEθ(xi)−∇θ
(

log

∫
e−Eθ(x)dx

)

= n−1
n∑
i=1

∇θEθ(xi)−
∫
∇θEθ(x)e−Eθ(x)dx/Zθ ,

= n−1
n∑
i=1

∇θEθ(xi)−
∫
∇θEθ(x) · pθ(x)dx

2.3. GENERATIVE MODELLING 33

We can thus see here two concurrent terms, to approximate independently for learning the parameters θ.
The first one can be approximated by taking "mini-batches" of data: Instead of, at each step, computing
the gradient of log pθ(xi) for each of the points xi ∈ D, we draw a subset of size b (of the order of a
hundred observations typically) B from the dataset and we approach the gradient n−1

∑n
i=1∇θEθ(xi)

by the estimator b−1
∑n

xi∈B∇θEθ(xi). This allows a low cost optimization that can be scaled up in
terms of number of data!

On the other hand, the second term requires a Monte Carlo approximation of an integral taken
w.r.t. to a density known up to some normalizing constant only. A trustable approximation of this
quantity thus requires a sampler in high dimensions. In thus case, EBM usually rely on Markov chain
Monte Carlo algorithms, see Section 5.3.

2.3.2 Latent variable models

With the progress of machine learning and in particular the common use of deep neural networks,
generative models have also become deep. Lately, another type of model has focused much attention:
Deep latent generative models (DLGM) introduced for example by [KB14; Goo+14a].

These models are constructed in the following way

X = F (Gθ(Z),W) ,

or equivalently, X ∼ pθ(· | Z). X is here the observation that we want to model. Let us assume
thereafter that X ∈ Rp, Z is the latent variable, specified in the model, a kind of encoding of the
observation X, and we assume here Z ∈ Rd. The assumptions of this type of model are that the
dimension of Z is smaller than that of X, and that Z follows a distribution which is in general very
simple. Gθ is a complex function, non-linear, heavily parameterized by θ. Typically Gθ is a deep
neural network. Gθ, finally, is typically called a decoder (in Variational Autoencoders) or generator (in
Generative Adversarial Networks). Finally, W is a noise term added to our probabilistic model, and F
a function composing this term and the deterministic response Gθ(Z). In a general way, the statistical
model is thus specified by parameters θ and the joint model

pθ(x, z) = pθ(x | z) · pθ(z) , (2.8)

that we can generate by drawing successively Z ∼ pθ(z), X|Z ∼ pθ(X | Z).
For example, a DLGM for the MNIST (resp. FashionMNIST) dataset of binarized images of

handwritten digits (resp. binarized fashion items) – see Figure 2.1 – could be defined as follows:

pθ(z) = N (z; 0, I) p(z) = (p1(z), . . . , pD(z)) = Gθ(z)

log pθ(x | z) =

D∑
j=1

log p (xj | z) =

D∑
j=1

xj log pj(z) + (1− xj) log (1− pj(z)) ,

where Gθ is the neural network with input the latent variable Z and output the parameters for the
distribution of the observation given the latent X | Z.

How to tune the parameters of the model Let us now apply the maximum likelihood criterion
to DLGMs. Note that we can write the likelihood of the observations X as

pθ(x) =

∫
Rd
pθ(x | z)pθ(z)dz . (2.9)

In this case, the likelihood to be maximized is thus in the form of a complex integral (in d dimension),
which does not admit of an explicit expression.

34 CHAPTER 2. INTRODUCTION AND MOTIVATION

Figure 2.1: MNIST (left) and Fashion MNIST (right) datasets.

Second, in the case of DLGMs, we are faced with an additional problem. The gradient, for an
observation x, ∇ log pθ(x) is not accessible, because it has to be expressed as an intractable integral. It
is then interesting to apply Fisher’s identity in this case, which is expressed as follows

∇θ log pθ(x) =

∫
Rd

∇θpθ(x, z)
pθ(x)

dz

=

∫
Rd
∇θ log pθ(x, z)

pθ(x, z)

pθ(x)
dz

=

∫
Rd
∇θ log pθ(x, z)pθ(z|x)dz . (2.10)

The gradient of the marginal log-likelihood ∇ log pθ(x), intractable, is then expressed as the integral
of the gradient of the joint log-likelihood ∇ log pθ(x, z) by the conditional distribution of the latent
variable z by the observation x (i.e., the distribution a posteriori of the latent variable given the
observation). The joint log-likelihood is tractable and can be easily computed in the specified models.
If the above integral is still intractable, it is now easy to estimate it by Monte Carlo method. Indeed, if
Z1 . . . , Zm ∼ pθ(· | x), an estimator of ∇ log pθ(x) is thus given by m−1

∑m
i=1∇ log pθ(x, Zi). In order

to obtain samples distributed according to pθ(· | x) ∝ pθ(z)pθ(x, z), we can use Markov chain Monte
Carlo algorithms, as for EBMs.

However, this approach should be repeated as many times as there are observations x, as for each
x comes a different posterior pθ(z | x). Thus, the need for more scalable and efficient methods, even
at the expense of some theoretical convergence results. This is the base idea of amortized Variational
Inference introduced in [KW13a].

2.3.3 Variational Auto Encoders

Variational Auto Encoders (VAE) [KW13a] are a type of DLGMs based on Variational Inference. VAEs
introduce a parametric family of distributions, called variational family Q = {qφ , φ ∈ Φ}, parameterized
by another parameter φ, which will help for the estimation of the gradient of the loglikelihood. [KW13a]
introduce the auxiliary criterion

L(θ, φ;x) =

∫
Rd

log

(
pθ(x, z)

qφ(z | x)

)
qφ(z | x)dz ,

2.3. GENERATIVE MODELLING 35

Figure 2.2: Amortized inference scheme, [KW19].

A more detailed introduction to Variational inference is given in Section 3.1. However, note that one
can express this quantity as

L(θ, φ;x) =

∫
Rd

log

(
pθ(z | x)pθ(x)

qφ(z | x)

)
qφ(z | x)dz = log pθ(x)−DKL(qφ(· | x‖pθ(· | x) . (2.11)

This objective is thus always lower than the marginal loglikelihood log pθ(x) and is thus referred to as
the Evidence Lower Bound (ELBO). If this objective is straightforward to estimate via Monte Carlo, it
differs from the loglikelihood log pθ(x), real quantity of interest here. Indeed, one can write

∇θL(θ, φ;x) =

∫
Rd
∇θ log pθ(x, z)qφ(z | x)dz ,

∇̂θL(θ, φ;x) = K−1
K∑
k=1

∇θ log pθ(x, Zk) , Z1:K ∼ qφ(· | x) .

and we can thus easily optimize the ELBO w.r.t. the parameters θ, although the expression of the
gradient is quite different from Fisher’s identity (2.10).

Moreover, we can see on (2.11) that the maximization of the ELBO will optimize concurrently the
two quantities of interest

• Maximizing the marginal loglikelihood log pθ(x),

• Minimizing the divergence DKL(qφ(· | x‖pθ(· | x) between the variational posterior and the true
posterior.

A key contribution of those models is also given by Amortized Variational Inference [KW13a]. Indeed, we
saw above that a critical point of the optimization is that the posterior distribution pθ(· | x) is different
for each obserbation x. [KW13a] proposes to learn one global mapping x 7→ {qφ(· | x) : z 7→ qφ(z | x)}
in x, where the parameters φ are thus shared. Section 2.3.3 shows schematically the idea of amortized
variational inference. The function which maps an observation x to a distribution in the latent space
x 7→ qφ(· | x) is called the encoder, while the counterpart which maps a latent point z to a distribution
in the observation space z 7→ pθ(· | z) is called the decoder, hence the name auto encoder.

This objective can also be re-written in spirit of the more classical (deterministic) Auto-Encoder
formulation. Let us assume we are given access to function Gθ : Rd 7→ Rp (decoder) and Hφ : Rp 7→ Rd
(encoder). Then, one can learn an Auo Encoder by minimizing over the dataset

LoperatornameAE(θ, φ;x) = ‖x−Gθ ◦Hφ(x)‖2 + λ‖Hφ(x)‖2 ,

36 CHAPTER 2. INTRODUCTION AND MOTIVATION

where the first term is the minimization of the reconstruction loss and the second term is a regularization
term (which can be chosen otherwise). This formulation is very close to that of the classical mean-field
VAE, as one can write

L(θ, φ;x) =

∫
log(pθ(x | z))qφ(z | x)dz +DKL(qφ(· | x)‖p) ,

where the first term can be exactly reexpressed as a reconstruction loss (and exactly the L2 difference
when pθ(x | z) is a Gaussian likelihood) and the second term a regularization term which can be exactly
re expressed as the L2 regularization between a mean field Gaussian qφ(z | x) and a standard normal
prior p(z).

If optimizing w.r.t. the parameters θ is now easy, taking the gradient w.r.t. the parameters φ of this
model is however not so straightforward. Indeed, in general, one may write the gradient of the function

φ 7→
∫
h(x, z)qφ(z | x)dz

as ∫
h(x, z)∇ log qφ(z|x)qφ(z|x)dz ,

which we an estimate via Monte Carlo. However, this log gradient trick, called the REINFORCE
estimator, has a very large variance. In order to make the optimization via stochastic gradient ascent
easier, one might use the reparameterization trick, crucial in this type of models. Assume that for all x
there exists a diffeomorphism ε 7→ Vφ,x(ε) and a distribution g easy to sample from such that

ε ∼ g , z = Vφ,x(ε) ∼ qφ(· | x) . (2.12)

Then, we can reparameterize the ELBO to write it as

L(θ, φ;x) =

∫
log

(
pθ(x, Vφ,x(ε))

qφ(Vφ,x(ε) | x)

)
g(ε)dε , (2.13)

where the expectation is now taken w.r.t. a function independent of the parameters φ, θ, which
allows for an easy Monte Carlo estimation. Moreover, the variational distribution is specified often by
choosing g and the diffeomorphism Vφ,x. Let us present here the Gaussian Mean-Field Variational Auto
Encoder [KW13a] as an example. The prior pθ(z) is chosen as g the standard normal Gaussian on Rd,
and pθ(x | z) is a distribution parameterized by the parameters gθ(z), where gθ is a neural network.
Symmetrically, we build qφ(z | x) = N (z;µφ(x), diag(σ2

φ(x))) in the case of Mean-Field VI, where µφ,
σφ are both neural networks, typically symmetrically built w.r.t. gθ. In this case, one can write the
reparameterization trick associated with qφ(· | x):

ε ∼ N (0, I)

z = µφ(x) + σφ(x)� ε ∼ qφ(· | x) .

This model is however limited, that is the ELBO does not necessarily give a satisfying approximation of
the true marginal log-likelihood. Numerous ways have been introduced in the literature to enhance this
classical Mean-Field VAE. Enhancing the variational family (reduced here to Gaussian distributions with
diagonal covariances), for example using normalizing flows – a composition of parametric diffeomorphisms
[RM15b; Kin+16a] is an effective way to improve the results. But other strategies have been presented
as well. In Auxiliary Variational Inference [SKW15a; RTB16; Maa+16], auxiliary random variables u
are added to the model to increase expressivity. In this case one writes the variational distribution as

qφ(u, z | x) = qφ(u | x)qφ(z | u, x) ,

which can then allow to define a marginal variational distribution potentially much more expressive

qφ(z | x) =

∫
qφ(u, z | x)du

2.4. INTRODUCTION TO MARKOV CHAIN MONTE CARLO METHODS 37

Similarly, we define the joint generative model

pθ(x, z, u) = pθ(u | x, z)pθ(x, z) .

We can then define the novel auxiliary objective as

LAVI(θ, φ;x) =

∫
log

pθ(x, z, u)

qφ(z, u | x)
qφ(z, u | x)dzdu 6 log pθ(x) .

Note that we can always write

LAVI(θ, φ;x) +

∫ {∫
log

(
qφ(u | x, z)
pθ(u | x, z)

)
qφ(u | x, z)du

}
qφ(z | x)dz

= L(θ, φ;x)

Thus if in practice the auxiliary ELBO is “further” away from the marginal log-likelihood, these models
can outperform classical VAEs due to the the increased expressivity of the variational distributions, as
presented in [SKW15a; RTB16; Maa+16] and in [Thi+21b].

Another direction [BGS15; Mad+17; DS18] focuses on the introduction on novel objectives based
on estimators of the quantity log pθ(x). Indeed, we can build an ELBO from any unbiased estimator of
the normalizing constant pθ(x) of the unnormalized distribution with density z 7→ pθ(x, z).

Note for example Ẑx(z) an unbiased estimator of pθ(x) for a proposal density qφ(· | x), i.e.∫
Rd Ẑx(z)qφ(z | x)dx = pθ(x). Then,

L(θ, φ;x) =

∫
Rd

log(Ẑx(z))qφ(z | x)dz 6 log pθ(x) ,

defines an ELBO, by Jensen’s inequality and the concavity of the logarithm. The classical VAE
implements the case where Ẑx(z) = pθ(x, z)/qφ(z | x), the importance estimate with 1 sample, which
is of course unbiased. However, many other estimators could be used here ! Indeed, more efficient
estimators yield “better” ELBO, i.e. closer to the marginal log-likelihood. Indeed, a Taylor expansion
shows that

L(θ, φ;x) ≈ log pθ(x)− 1

2
varqφ(·|x)

[
Ẑx(z)

pθ(x)

]
,

see [Mad+17; DS18] for more details. Let us quote here the Importance Weighted Auto Encoder (IWAE),
based on the K-samples importance estimator Ẑx(Z1:K) = K−1

∑K
i=1 pθ(x, Zi)/qφ(Zi | x),which leads

to the ELBO

LIW(θ, φ;x) =

∫
log

(
K−1

K∑
i=1

pθ(x, zi)

qφ(zi | x)

)
K∏
i=1

qφ(zi | x)dzi .

A crucial characteristic of the estimator and the corresponding ELBO is that the estimator of pθ(x) has
to be differentiable, in order to apply stochastic gradient optimization afterwards. Developping such
estimators and novel ELBOs is an important part of this thesis.

2.4 Introduction to Markov chain Monte Carlo methods

Markov chains are a class of stochastic processes commonly used to model random phenomena. A
Markov chain (Xk)k∈N is a sequence of random variables defined on a filtered space (Fk)k∈N such that
the law of Xn+1 conditional on the Fn filtration is equal to the law of Xn+1 conditional on Xn, P-almost
certainly. In other words, this means that a discrete-time stochastic process has the Markov property if
the past and the future are independent given the present. [Dou+18] includes a very large bibliography
for the theoretical aspects of Markov chains. Markov chains are also widely used in the modeling of

38 CHAPTER 2. INTRODUCTION AND MOTIVATION

queuing or storage processes, and in the modeling of time series (in particular in finance). Markov
chains can also be used to build algorithms aiming at sampling according to a target distribution π,
often known up to some normalizing constant. We then enter the framework of Markov chain Monte
Carlo (MCMC) algorithms, which are the source of much attention in the past years. This thesis
concentrates on the latter.

Let us now introduce some notations. In this thesis, we study Markov chains with values in Rd
endowed with the Borel sigma-algebra B(Rd). A homogeneous Markov chain (Xk)k∈N is characterized
by its kernel R : Rd × B(Rd)→ [0, 1] which satisfies

1. For any x ∈ Rd, R(x, ·) is a probability measure on B(Rd),

2. For any A ∈ B(Rd), x 7→ R(x,A) is a measurable function.

For any probability measure µ on B(Rd) and A ∈ B(Rd), we denote by µR(A) =
∫
Rd R(x,A)µ(dx) and

for any k ∈ N, x ∈ Rd, Rk+1(x,A) =
∫
Rd R(x, dy)Rk(y,A). For a probability measure µ on B(Rd) and f

an µ-integrable function, µ(f) =
∫
Rd f(x)µ(dx). For x ∈ Rd and f integrable under R(x, ·), we denote

by Rf(x) =
∫
Rd R(x, dy)f(y).

One of the central questions in MCMC is to determine whether the kernel R admits as unique
invariant distribution π, i.e. πR = π. In other words, this means that applying the kernel R to a sample
X will result in a sample Y also distributed according to π. A property implying this invariance is
reversibility, i.e. for any A,B ∈ B(Rd),

∫
A π(dx)R(x,B) =

∫
B π(dx)R(x,A). This property is therefore

stronger than simple invariance and will be discussed in particular in the Section 2.6.1.
In particular, invariance is a key property to ensure the convergence of the distribution of samples

(starting from an initial µ0 arbitrary distribution) µ0R
n produced by a Markov chain after n iterations

of the kernel R to the target π , which then allows to use directly MCMC algorithms to produce samples
from π.

In particular, the Metropolis-Hastings algorithms give a general recipe to build such kernels. Let us
detail here the Random Walk Metropolis (RWM) which is one of the simplest examples. Let us suppose
here that the distribution π admits a density with respect to the Lebesgue measure, also denoted π by
abuse of notation. The RWM algorithm can be defined, for a certain standard deviation σ > 0 and an
initial distribution µ0, by:

• Draw X0 according to µ0,

• For k > 0, define the proposal Yk+1 = Xk + σWk+1, where Wk is a standard Gaussian vector in
dimension d,

• With probability min(1, π(Yk+1)/π(Xk)), accept the proposal Yk+1, i.e. set Xk+1 = Yk+1. Other-
wise, reject the proposal and set Xk+1 = Xk.

It is possible to define the kernel R corresponding to this algorithm, given for any x ∈ Rd,A ∈ B(Rd) by

R(x,A) =

∫
A

min

(
1,
π(y)

π(x)

)
e−‖x−y‖

2/2σ2

(2πσ2)d/2
dy

+ δx(A)

∫
Rd

{
1−min

(
1,
π(y)

π(x)

)}
e−‖x−y‖

2/2σ2

(2πσ2)d/2
dy . (2.14)

We can then easily check the reversibility of π with respect to R. If this algorithm is very simple to
understand and to use, many developments and refinements based on similar ideas but using more
sophisticated proposals have been studied and proposed, in previous works and in this thesis.

2.5 Conclusion and plan

This thesis focuses thus on different tasks which can be decomposed in three main parts.

2.6. CONTRIBUTIONS 39

• The development of efficient sampling and simulation methods for potentially high dimensional
distributions, known up to some normalizing constant.

• The derivation of algorithms for learning generative models for an approximate simulation of a
target distribution, or for deep latent generative models.

• The application of approximate inference methods for Bayesian deep learning.

Summary of our contributions This thesis is based on the following articles and preprints:

• Thin, A., Kotelevskii, N., Denain, J.S., Grinsztajn, L., Durmus, A., Panov, M. & Moulines, E.,
2020. Metflow: A new efficient method for bridging the gap between Markov chain Monte Carlo
and variational inference. arXiv preprint arXiv:2002.12253.

• Thin, A., Kotelevskii, N., Durmus, A., Panov, M. & Moulines, E., 2020. Metropolized flow: from
invertible flow to MCMC. ICML Workshop on Invertible Neural Networks, Normalizing Flows,
and Explicit Likelihood Models, 2020.

• Thin, A., Kotelevskii, N., Andrieu, C., Durmus, A., Moulines, E. & Panov, M., 2020. Non-
reversible MCMC from conditional invertible transforms: a complete recipe with convergence
guarantees. arXiv preprint arXiv:2012.15550.

• Thin, A., Kotelevskii, N., Doucet, A., Durmus, A., Moulines, E., & Panov, M. (2021, July).
Monte Carlo variational auto-encoders. In International Conference on Machine Learning (pp.
10247-10257). PMLR.

• Thin, A., Janati El Idrissi, Y., Le Corff, S., Ollion, C., Moulines, E., Doucet, A., Durmus, A. &
Robert, C. (2021). NEO: Non Equilibrium Sampling on the Orbits of a Deterministic Transform.
Advances in Neural Information Processing Systems, 34.

• Lagutin, E., Selikhanovych, D., Thin, A., Samsonov, S., Naumov, A., Belomestny, D., Panov, M.
& Moulines, E., 2021. Ex 2 MCMC: Sampling through Exploration Exploitation. arXiv preprint
arXiv:2111.02702.

2.6 Contributions

2.6.1 Sampling and simulation methods

We develop three main works here for novel sampling and simulation methods, in particular using
Markov chain Monte Carlo algorithms.

Non-reversible MCMC from conditional invertible transforms: a complete recipe with
convergence guarantees The Metropolis-Hastings (MH) algorithm, the workhorse of Markov Chain
Monte Carlo sampling, provides a simple recipe to construct reversible Markov kernels.

However, reversibility is a tractable property which is usually considered in most of the MCMC
algorithms we work with (as directly verified in MH algorithms), it is however not necessarily desirable
when considering performance. Indeed, it provides a stronger condition than the necessary invariance
of the Markov kernel which can have a non negligible impact on correlation of the produced samples.
This has prompted recent interest in designing kernels breaking this detailed balance property while
satisfying invariance. Moreover, novel MH kernels have also been introduced which rely on complex
invertible deterministic transforms, usually heavily parameterized [SZE17; LHS17a; Thi+20b; Nek+20].
This work has two objectives. The first one is to develop a simple and complete recipe for a certain type
of non reversible MH kernels which still satisfy invariance with respect to a certain target distributions
and all the classical results of convergence that result in the usual MH literature [Dou+18], which

40 CHAPTER 2. INTRODUCTION AND MOTIVATION

10 5 0 5 10
Reversible

10

5

0

5

10

NICE with full refresh
Accepted
Target

10 5 0 5 10
Non-reversible

10

5

0

5

10

NICE with randomized full refresh
Accepted
Target

10 5 0 5 10
Non-reversible

10

5

0

5

10

NICE with persistence
Accepted
Target

Figure 2.3: Effect of the irreversibility of an MCMC sampler.

lead to a set of simple and practically verifiable conditions. Moreover, we apply this theory and the
convergence results to different types of MH kernels based on these complex transforms, introduced in
this paper or the previous literature [SZE17; LHS17a].

We illustrate on this figure our work with NICE sampler. NICE sampler is a generalization of
Hamiltonian Monte Carlo based on neural networks learnt during the process. If classically, this
algorithm is reversible, we prove that we can make it non reversible with two different ways, we we
express in this figure.

The reversibility and irreversibility here are induced by the refreshment between each step of the
momentum term of the extended target distribution. Full refresh means that at each step, we refresh
completely by redrawing a momentum from the marginal e−K(p), randomized full refresh means that we
only refresh it fully with some probability β < 1, and persistence means that we only partially refresh it
with a Gaussian autoregression kernel (the kinetic energy being chosen here quadratic, as it often is).

NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform Non Equi-
librium sampling along the Orbits of a deterministic transform (NEO) proposes a novel estimator for
normalizing constants. Based on a well chosen deterministic and invertible transform T, NEO proposes
to estimate evidence by sampling particles according to some prior, not necessarily informative, and
transporting those particles by T to the regions that are the most significative for the target distribution
π. To ensure unbiasedness of the estimator, we derive a formula to combine the contribution of each
point along the orbit. This provides thus an algorithm for a novel estimator. A few criteria are derived
to assess the performance of this estimator and guide its tuning, in particular a counterpart of the
variance of an IS estimator, showing how powerful the effect of the transform T can be. This transform
is chosen as a conformal Hamiltonian operator, inspired by the MCMC literature, allowing to inform
the trajectories with the target distribution.

Moreover, from this estimator, a NEO-MCMC sampler is derived. This sampler is directly com-
parable to HMC in terms of complexity and shows competitiveness on several toy and real world
examples.

We show in the following figures an illustration of this work. Figure 5.1 shows how the estimator
scales in term of trajectory length compared to a classical IS counterpart. We display, for different values
of hyperparameters, how the effective variance decreases with the length of the trajectory compared to
how the variance of the IS estimator decreases as the number of samples increases.

2.6. CONTRIBUTIONS 41

0 5 10 15 20 25
2.5

2.0

1.5

1.0

0.5

0.0 = 0.1
 = 1.0
 = 2.0

Figure 2.4: Left: Variance of NEO as a function of the lengtt K of the trajectory vs Variance of IS
estimator with K samples (red) in log10-scale (the lower the better). Second left to right: Four examples
of the corresponding trajectories with the same random seed for different values of the friction term of
the conformal Hamiltonian γ (from left to right, γ = 0.1, 1, 2).

Ex22MCMC: Sampling through Exploration Exploitation A common criticism towards MCMC
is that as they propose only “local” moves, auto-correlation of the samples produced by the chain is
high and hard to decrease. On the other hand, pseudo marginal methods presented above, and in
particular i-SIR algorithm describe methods which are based on “global” proposal moves. However,
these methods struggle a lot when dimension increases. Explore-Exploit Markov chain Monte Carlo
algorithm (Ex2MCMC) is a novel type of MCMC kernel, which combines multiple global proposals and
local moves and aims at retaining the best of both. To this effect, several ideas are developed. The first
is to propose an algorithm combining i-SIR composed with a few local kernel moves to “rejuvenate” the
sampled particle, typically MALA. In that case, we show that the hypothesis necessary for ergodicity
and geometrical ergodicity results of the i-SIR sampler weakens.

Moreover, one can also argue that in high dimension, i-SIR struggles because it only proposes
global uninformed moves. In order to try and alleviate such behaviour, a complete recipe of how to
sample with correlated i-SIR proposals is developed. It allows in particular to only sample a few global
exploratory points and refresh as well by exploring locally the region, still enjoying the embarrassingly
parallel character of the i-SIR kernel. On the other hand, we also propose an adaptive counterpart of the
Ex2MCMC kernel, called FlEx2MCMC. FlEx2MCMC is based on normalizing flow proposals, learnt
adaptively during the sampling stage, which will approximate better and better the target distribution
to propose more effectively points , especially when dimension increases. The normalizing flow can be
learnt with forward or backward KL, or a mixture or both.

2.6.2 Generative models

We develop in this part two types of generative models, linked to deep latent generative models or
normalizing flows.

MetFlow: A New Efficient Method for Bridging the Gap between Markov Chain Monte
Carlo and Variational Inference MCMC and Variational Inference are typically opposed as their
weaknesses and strengths are very complementary (asymptotic and non asymptotic convergence results
for MCMC; scalability and automatic tuning of the parameters for VI). In MetFlow: A New Efficient
Method for Bridging the Gap between Markov Chain Monte Carlo and Variational Inference, a method is
developed to propose a way of combining both Variational Inference and MCMC algorithms, in particular
MCMC algorithms with Metropolis Hastings rejection steps, which are crucial to satisfy invariance
conditions with respect to the distribution of interest. This allows to construct variational families
based on distribution obtained after a few MCMC steps applied on an initial learnable distribution,
which increases greatly their expressivity.

Moreover, the parameters of the MCMC kernel can be optimized in this framework using a custom
Evidence Lower Bound (ELBO). To unleash the full potential of this ELBO, new MCMC kernels
based on normalizing flows proposals are introduced, called Metropolized Flows, or MetFlow. The
resulting method thus proposes a novel way to sample using normalizing flows and MCMC with an
automatic way of tuning (through automatic differentiation) the parameters of the MCMC kernels.

42 CHAPTER 2. INTRODUCTION AND MOTIVATION

Figure 2.5: Consecutive outputs of normalizing flows (top) or metropolized flows (MetFlow, bottom).
Left: prior normal distribution, then successive effect of the 5 transformations.

Figure 2.6: Comparison of Metropolized flow against the same normalizing flow learnt classically on
difficult target distributions in R2.

Both those cases can be displayed on the following toy examples. The first example shows the benefits
of being able to learn an initial distribution before applying MCMC steps afterwards, and the second
showcases the effect of MetFlow with transitions provided by normalizing flows on a mixture of 8
Gaussian distributions examples. It displays clearly how MetFlow kernels are able to override some
of the topological constraints normalizing flows are subject to and how expressive a MetFlow based
variational family can be.

Monte Carlo Variational Auto Encoders We develop here a novel way to learn DLGMs and
VAEs, in particular relying on state-of-the-art estimators of the normalizing constant for generative
and decoder based models, Annealed Importance Sampling and Sequential Importance Sampling, see
[GBC16]. In order to build a differentiable ELBO based on thos normalizing constant estimators, we
develop a particular type of Auxiliary Variational Inference, using Markov kernels relying in particular
on Langevin dynamics. If using classical Sequential Importance Sampling with Langevin proposal
densities bears no technical difficulty to design a novel VAE, the case of AIS is more particular. Indeed,
enforcing reversibility (3.3) implicates the use of Metropolis Hastings kernels which are not differentiable

2.6. CONTRIBUTIONS 43

per say. A similar development to the one obtained in MetFlow allows to write however an extension of
the VAE based on AIS estimator of the normalizing constant pθ(x). This results in the Monte Carlo
Variational Auto Encoder, a VAE competitive to other state-of-the-art methods for learning VAEs.

2.6.3 Application to Bayesian Deep Learning: Efficient Approximate Inference
with Gaussian Stochastic Weight Averaging

This part develops the proposed solution for approximate inference in bayesian deep neural networks in
the context of the NeurIPS competition Approximate Inference in Bayesian Deep Learning 1

In particular, we develop here a generalization of the stochastic weight averaging method with Gaus-
sians, using in particular Langevin dynamics with stochastic gradient, which allows us to approximate
the distribution of the network weights by a mixture of Gaussian distributions. The resulting method
is competitive to approximate the true posterior distribution of the weights and the corresponding
predictive distribution compared to a standard provided by very long Markov chains produced by the
Hamiltonian Monte Carlo algorithm.

1https://izmailovpavel.github.io/neurips_bdl_competition/

https://izmailovpavel.github.io/neurips_bdl_competition/

44 CHAPTER 2. INTRODUCTION AND MOTIVATION

Chapter 3

General Background

3.1 Classical estimators of normalizing constants

The estimation of the normalizing constant, as seen above, is a fundamental problem in probabilistic
machine learning, and many estimators have been considered [FW12; MFR20]. The most straightforward
is of course given by Importance Sampling (IS). Consider a distribution π, known only up to some
normalizing constant Z, (we note in the following π = π̃/Z, where π̃ is the unnormalized version of π
to which we have access), and an auxiliary distribution, normalized and from which sampling is easy.
Suppose as well that they are absolutely continuous w.r.t. each other, that is, there exists a non-negative
function w = dπ̃/dq. In the case where π and q have a density w.r.t. the Lebesgue measure, also noted
π and q here, as long as π(x) > 0⇒ q(x) > 0, we can write w = π̃/q directly.

Then, an estimator ẐIS(X1:n) of Z is given by sampling

X1, . . . , Xn
iid∼ q , ẐIS(X1:n) = n−1

n∑
i=1

w(Xi) . (3.1)

The IS estimator ẐIS(X1:n) is unbiased and converges almost surely to Z as n goes to ∞. However, the
choice of the importance distribution q is crucial and can be difficult. Indeed, it has been put forward,
for example in [Aga+17], that when the dimension d increases, the number of samples n should grow
exponentially in d for this estimator to maintain a given accuracy. This can be known as an effect of
the curse of dimensionality.

Moreover, finding a good importance distribution (or tuning its parameters when q is learnable)
automatically is not necessarily straightforward.

Many improvement of the vanilla IS algorithm have been proposed, see for example [OZ00b; Aga+17;
AM21]. Of particular interest is Annealed Importance Sampling (AIS) estimator, [Nea01b; Wu+16;
DF19] which can be seen as a special case of Sequential Monte Carlo (SMC) [DDJ06b].

Annealed Importance Sampling [Nea01b] and in general Sequential Monte Carlo are based on the
intuition that if the distributions q and π are quite different, one might benefit from creating a annealing
(or tempering) path from q to π. Let us present first the outline of an SMC algorithm.

Introduction to Sequential Monte Carlo Suppose now generally that we have access to some tar-
get unnormalized pdf {pk(x0:k)}06k6K . We could sample from a sequence of proposal pdf {qk(x0:k)}06k6K ,
or let qk(x0:k) = mk(z

k−1, zk)qk−1(x1:k−1), where mk(z
k−1, ·) is a transition density functions so as to

re-use our samples. In this case, we can write the importance weights on this sequence as

wk(x
0:k) =

pk(x
0:k)

qk(x0:k)
=

pk(x
0:k)

mk(xk−1, xk)qk−1(x0:k−1)

=
pk(x

0:k)

mk(xk−1, xk)pk−1(x0:k−1)
wk−1(x0:k−1) .

Thus, the Sequential Importance Sampling algorithms boils down to

45

46 CHAPTER 3. GENERAL BACKGROUND

• Sample X0
1 , . . . , X

0
n ∼ q0 the first particles according to the proposal distribution q0.

• Compute the importance weights W 0
i = p0(X0

i)/q0(X0
i).

• For steps 1 6 k 6 K,

– Sample Xk
i ∼ mk(X

k−1
i , ·) the next step particle.

– Compute the incremental importance weight

wk(X
k−1
i , Xk

i) =
pk(x0:k)

mk(xk−1, xk)pk−1(x0:k−1)
wk−1(x0:k−1) ,

and the weight W k
i ∝ wk(Xk−1

i , Xk
i)W k−1

i

Some methods add as well resampling steps between each iteration, but we omit them here for simplicity
and as in many of the applications and extensions of this method we consider, we do not add this
resampling step. This framework is useful as we can actually use it to build estimators and samplers
from any sequence of distributions [DDJ06b]. Indeed, given a sequence {γk}k6K of target distributions
on Rd, we may construct a auxiliary sequence {pk}k6K of distributions by introducing Markov transition
densities {`k}k6K

pk(x
0:k) = γk(z

k)

k−1∏
p=0

`k(z
p+1, zp) .

This form of distributions is particularly useful because each pk has the correct marginal on xk, and
also has a convenient form for the use of the techniques introduced above.

The choice of the kernel density `k is discussed in [DDJ06b] and should be optimally chosen to

`k−1(xk, xk−1) =
γk−1(xk−1)mk(x

k−1, xk)∫
γk−1(xk−1)mk(xk−1, xk)dxk−1

(3.2)

Annealed Importance Sampling implements a special case of an SMC algorithm for computing the
normalizing constant of the target distribution π. To compute the AIS estimator, build a sequence of
intermediate distribution which will bridge the simple, normalized, easy-to-sample distribution q to
the complex unnormalized π, that is, consider {γk}06k6K such that γ0 = q, γK = π̃. Typically, one
might choose a sequence {βk}06k6K such that 0 = β0 < β1 < · · · < βK = 1 and for k ∈ {0, . . . ,K},
γk = q1−βk π̃βk , where {βk}Kk=0 is called the annealing schedule. The AIS estimator is given directly by
the SMC algorithm by computing

X0
1 , . . . , X

0
n

iid∼ q , Xk
i ∼ mk(X

k−1
i , ·) for i ∈ {1, . . . , n}, k ∈ {1, . . . ,K} ,

ẐAIS(X0:K
1:N) =

1

N

N∑
k=1

WK(X0:K
i) ,

where for k ∈ {1, . . . ,K}
Wk(X

0:k
i) = wk(X

0:k
i , Xk

i)Wk−1(X0:k−1
i) .

In particular, the AIS algorithm approximates the optimal expression (3.2) of the kernel `k by specifying
the constraint

γk(x
k−1)mk(x

k−1, xk) = γk(x
k)`k(x

k, xk−1) . (3.3)

We express for simplicity this expression with density here. However, in order to satisfy this detailed
balance condition, one usually has to rely on Metropolis-Hastings kernels, which do not have a density
w.r.t. the Lebesgue measure. In this case, the expression of the weights and the incremental weights
simplifies, and we can easily show that

wk(x
k−1, xk) = wk(x

k−1) =
γk(x

k−1)

γk−1(xk−1)
, WK(x0:K) =

K∏
k=1

γk(x
k−1)

γk−1(xk−1)
.

3.1. CLASSICAL ESTIMATORS OF NORMALIZING CONSTANTS 47

This estimator can also be shown to be unbiased and provides in particular a state-of-the-art method
for estimating the normalizing constants of generative models, [Wu+16]. However, it still remains
unclear in this type of case how to derive a good initial distribution q, and how the parameters of this
refined algorithm should be tuned (Markov kernels and their own parameters, length of the annealing
schedule, parameters for the annealing schedule {βk}06k6K , ...).

Variational Inference Variational Inference (VI) is a method that approximates probability densities
through optimization. This method can be used widely and is usually faster and more scalable than
classical methods such as MCMC. The idea is to build a variational family of distributions, Q, and then
re formulate the sampling problem as a minimization of some divergence D(q‖π) between a distribution
q ∈ Q and the target π. The classical divergence used is the Kullback–Leibler divergence DKL , and in
this case we can thus express the VI problem as

q∗ = arg min
q∈Q

D(q‖π) = arg min
q∈Q

∫
log
(q
π

)
dq .

From this problem, we can build a novel objective, referred to as the Evidence Lower Bound (ELBO).
Indeed, suppose that π, q here have a density w.r.t. to the Lebesgue measure, and that π is only
accessible up to some (unknown) normalizing constant Z, π = π̃/Z. Then, we introduce the ELBO

L =

∫
Rd

log

(
π̃(x)

q(x)

)
q(x)dx = log Z−

∫
Rd

log

(
q(x)

π(x)

)
q(x)dx , (3.4)

which is thus a lower bound of the evidence Z by nonnegativity of the KL divergence. The VI
problem is thus equivalent to the maximization of the ELBO above. Usually, the variational family
Q = {qφ ; φ ∈ Φ} is parameterized by some parameter φ, and the ELBO L(φ) is thus optimized via
stochastic gradient ascent on the parameter φ.

Note that an ELBO can also be built from any unbiased estimator of the normalizing constant Z.
Indeed, if in classical VI, the estimator considered is just a one sample importance sampling estimator:
Ẑ(X) = π̃(X)/q(X), X ∼ q, this could be generalized. Let Ẑ(X) denote an unbiased estimator of Z for
a density q, that is

∫
Rd Ẑ(x)q(x)dx = Z. Then, the quantity

L =

∫
Rd

log(Ẑ(x))q(x)dx 6 log Z

is also an Evidence Lower Bound, by Jensen’s inequality and the concavity of the logarithm. In particular,
note that Importance Weighted Variational Inference [BGS15] considers rather K importance samples
and the estimator ẐIS(X1:K) = K−1

∑K
i=1 π̃(Xi)/q(Xi) and thus the ELBO

LIW =

∫
log

(
K−1

K∑
i=1

π̃(xi)

q(xi)

)
K∏
i=1

q(xi)dxi .

Building efficient normalizing constant estimators thus allow to consider different ELBOs. Moreover, a
Taylor expansion shows that

L ≈ log Z− 1

2
varq

[
Ẑ(x)

π(x)

]
,

see [Mad+17; DS18] for more details. This shows that changing the estimator for a more efficient one
(less variance) will increase the ELBO performance (closer to the actual evidence).

This becomes crucial in DLGM trained via Maximum likelihood estimation (or a proxy of maximum
likelihood) as in that case the normalizing constant log Z = log pθ(x) the actual quantity to optimize in
θ, as seen in Section 2.3.3.

48 CHAPTER 3. GENERAL BACKGROUND

Usually, variational inference builds on a simple mean-field approximation: the family Q is composed
of normal distributions with diagonal covariances, the parameters φ thus being the mean and the
diagonal of the covariance of the distribution. However, this struggles easily with a lack of expressivity.
Usual attempts at extending the classical mean-field distribution usually involve the use of normalizing
flows [RM15b; Pap+21], i.e. a composition of deterministic diffeomorphisms (C1 bijective mappings)
which map a simple initial distribution to an arbitrarily complex one depending on the number and the
expressivity of the composed diffeomorphisms, see Section 3.3. The optimization of such models can
be done easily with the automatic differentiation packages present for example in Pytorch [Fal19] and
provide scalable inference models.

In the recent works, IS based on neural networks has been subject to an increasing attention; see e.g.
[EM12; Mül+19; Pap+19; Pra19a; Wir+20; WKN20b]. In particular, Neural IS is an adaptive IS relying
on an importance distributions obtained using normalizing flows to a reference initial distribution. The
advantage of these methods is that they provide an automatic way of tuning the importance distribution
parameterized via the normalizing flow, by minimizing a divergence between the proposal and the
target (such as the Kullback–Leibler [Mül+19] or the χ2-divergence [Aga+17]). Other works suggests
to add stochasticity in the process to improve the normalizing flow; see for example [WKN20b; Cor+19].
For learning importance distributions, as well as in a normalizing flow context, literature suggests to
optimize the parameters of the importance distribution using a VI loss.

Other methods estimation methods non covered here can be given (non exhaustive list) by nested
sampling [Ski04], bridge and path sampling [GM98], and are discussed for example in [CS97].

3.2 High dimensional simulation and sampling techniques

MCMC is classically used for simulating high dimensional distribution. However, when dimension and
complexity increases, the Random Walk Metropolis algorithm presented in Section 5.3 is not necessarily
favored. Indeed, gradient-based algorithms are widely considered to be state-of-the-art in MCMC,
and are rather used in these more complex settings. This type of algorithms, starting with Langevin
algorithms [Par81], use gradient of the target distribution π to inform the proposals. Several measures
of performance have been developed to quantify this argument. In particular, high-dimensional scaling
arguments compare how the method is affected by the dimension d of the target π. To give some
benchmark, for RWM, the decay of performance is of order d−1 [GGR97], for the Langevin algorithm,
this decay is of order d−1/3 [RR98], while for Hamiltonian Monte Carlo, [Bes+13] showed that it was of
order d−1/4. Let us now present these different algorithms, and assume thus in the following that the
target π is continuously log-differentiable.

The overdamped Langevin dynamics associated to a target π log-differentiable can be written as
the solution of the stochastic differentiable equation

dXt = ∇ log π(Xt)dt+
√

2dBt , (3.5)

where Bt is a d-dimensional Brownian motion. This continuous dynamics is π-reversible. In a MCMC
sampling context, we rather consider the Euler-Maruyama discretization of this dyamics, with stepsize
η, which can be simulated, given a starting point X0, by the update for k ∈ N

Xk+1 = Xk + η∇ log π(Xk) +
√

2ηWk+1 , (3.6)

where {Wk}k∈N is a sequence of d-dimensional i.i.d. standard Gaussian variables. This describes the
Unadjusted Langevin Algorithm (ULA). This discretization is however not exact, and the distribution
sampled by this dynamics is then slightly off the right target π, see [DM17] for a detailed discussion.

In order to recover the reversibility w.r.t. to the target π, one has to add a Metropolis–Hastings
correction step, in the spirit of the RWM algorithm. Define the proposal density of this algorithm,
which can be defined as q(x, y) = N(y;x+ η∇ log π(x), 2η), where N(·;µ,Σ) denotes the d-dimensional
Gaussian density with mean µ and covariance matrix Σ. Given a starting point X0, and a sequence
{Wk}k∈N of d dimensional standard Gaussian vectors, the adjusted algorithm repeats for k ∈ N

3.2. HIGH DIMENSIONAL SIMULATION AND SAMPLING TECHNIQUES 49

• Define Yk+1 = Xk + η∇ log π(Xk) +
√

2ηWk+1,

• With probability min(1, [π(YK+1)q(Yk+1, Xk)]/[π(Xk)q(Xk, Yk+1)], accept proposal Yk+1, and set
Xk+1 = Yk+1. Else, reject proposal and set Xk+1 = Xk.

This is called the Metropolis Adjusted Langevin Algorithm (MALA) [Bes94a].
More recently, the Hamiltonian (or Hybrid) Monte Carlo (HMC) algorithm provides an even more

efficient sampler [Bes+13]. HMC starts by extending the target distribution π to π̄ distribution in R2d as
follows: π̄(q, p) ∝ elog π̃(q)−K(p), where K(p) = 1/2pTM−1p, with M a positive definite mass matrix and
p ∈ Rd. By analogy with statistical physics, we refer to q (resp. p) as the position (resp. momentum)
and let us denote H(q, p) = U(q) +K(p), with U(q) = − log π̃(q) referred to as the potential energy,
K(p) referred to as the kinetic energy. It is worth noting here that choices of kinetic energies other
than the Gaussian term which we wrote here have been proposer, see for example [Lu+17; LFR19]. Let
us follow the presentation given in [DMS17]. This factorization implies moreover that if we can sample
according to this joint distribution, discarding the momentum variable would give us a sample from the
distribution of interest π.

Hamilton’s equations which control the evolution of the system are defined now

dq

dt
=
∂H(q, p)

∂p
(3.7)

dp

dt
= −∂H(q, p)

∂q
,

or equivalently

d

dt

[
q(t)
p(t)

]
= J−1∇H(q(t), p(t)),

where J =

[
0d×d −Idd×d
Idd×d 0d×d

]
, ∇H(q, p) =

[
∇U(q)
p

]
.

Denote by (ϕt)t>0 the flow associated to (3.7), that is, for t > 0, ϕt is the function R2d → R2d which
associates to each (q0, p0) the value at time t of the (unique) solution of (3.7) equal to (q0, p0) at time
t = 0.

An important feature of these dynamics is that they preserve the Hamiltonian. Indeed, any solution
(q(t), p(t)) of this equation verifies

d

dt
H(q(t), p(t)) = ∇H(q(t), p(t))J−1∇H(q(t), p(t)) = 0 ,

which is equivalent to say that for each t > 0, H ◦ ϕt = H. A mapping Φ: R2d → R2d is said to be
symplectic if, at each point (p, q) ∈ R2d, JΦ(q, p)TJJφ(q, p) = J , where Jφ(q, p) denotes the 2d × 2d
Jacobian of Φ. Symplectiness is crucial because it implies volume preservation on R2d. In particular,
for t ∈ R, ϕt is symplectic. Denote by S the momentum flip involution, S : (q, p) 7→ (q,−p). A mapping
Φ: R2d → R2d is said to be reversible w.r.t. S (S-reversible) if Φ ◦ S = S ◦ Φ−1. By uniqueness of
solutions of (3.7), for all t ∈ R, the flow ϕt is a S-reversible mapping. More precisely, with an initial
state (q0, p0) and (q(t), p(t)) = ϕt(q0, p0) the state at time t, then

ϕt(q(t),−p(t)) = ϕt (S ◦ ϕt (q0, p0)) = (q0,−p0) = S (q0, p0) .

Thus, as ϕt preserves the Hamiltonian and oriented volume, its preserves as well the probability
measure π̄, that is for t ∈ R,A ∈ B(R2d), π̄(ϕt(A)) = π̄(A), where we have written for A ∈ B(R2d),
π̄(A) =

∫
R2d π̄(q, p)1A(q, p)dqdp.

The Hamiltonian Monte Carlo aims at using samples produces using a solution of (3.7). However,
as an explicit solution is usually not accessible, a discretization must be used instead. A key point is

50 CHAPTER 3. GENERAL BACKGROUND

that the discretization must be symplectic and S-reversible as well, which can be satisfied using the
Störmer Verlet integrator, or Leap-frog integrator. It is interesting to note that if the Hamiltonian is
not exactly preserved through the discretization, it is “approximately” preserved, and this difference
will be corrected using a Metropolis-Hastings step, similarly to MALA.

A single leapfrog step Fη(q0, p0) = (q1, p1) is a combination of 3 shear transforms:

p1/2 = p0 − η/2∇U(q0) (3.8)

q1 = q0 + ηp1/2, (3.9)

p1 = p1/2 − η/2∇U(q1) . (3.10)

In general, one chooses a discretization step η and a number of steps K (thus equivalent to integrating
the Hamiltonian system (3.7) during a physical time Kη). The sequence (q`, p`)

K
l=0 is an approximation

of the solution of (3.7) at times {`η : ` ∈ {0, . . . ,K}} started at (q0, p0).
In the end, the HMC algorithm implements a special case of a Metropolis Hastings algorithm, in

which we sample a proposal, and then accept or reject it with some probability designed to make the
kernel reversible w.r.t. the target distribution. The HMC algorithm with K LeapFrog steps, a stepsize
η goes as follows:

• Refresh the momentum, i.e. draw p ∼ N(0,M).

• Compute propose (q′, p′) = FKη (q, p).

• With probability αHMC((q, p), (q′, p′)) = 1 ∧ π̄(q′,p′)
π̄(q,p) accept and set current point to (q′, p′). Else,

reject and set current point to (q,−p).

Note in particular hat setting K = 1 reduces the algorithm to MALA.
The HMC algorithm has been very popular and considered state-of-the-art in the recent literature,

along with its extensions , for example [LHS17a; GC11], and in particular [HG+14a].

Pseudo-marginal MCMC Interestingly enough, from an unbiased estimator of the normalising
constant Z of π̃, it is possible to build an MCMC procedure that samples from π. Let Ẑ(X) denote an
unbiased estimator of Z for a density q, that is

∫
Rd Ẑ(x)q(x)dx = Z. Build the procedure as follows:

• Draw X1:K ∼ q [Note here that X1:K do not necessarily need to be independent, but more on
that later; see [Lag+21; Thi+21a]].

• Compute the estimators {Ẑ(Xk)}16k6K .

• Sample Y ∼ Cat(Ẑ(Xk)/{
∑K

i=1 Ẑ(Xi))}), where Cat(ωk) is the categorical distribution over
{1, . . . ,K} associated to the probabilities {ωk}16k6K .

In the case where Ẑ(x) = π̃(x)/q(x) the importance estimate with 1 sample, this procedure describes
exactly the Sampling Importance Resampling procedure [Rub87]. This procedure, unfortunately, is
only valid when K goes to ∞, see [SG92; SBH03]. However, this inexact procedure can be turned
into a invariant MCMC procedure w.r.t. π, see in the Sampling Importance Resampling case [ADH10;
ALV+18]. It goes as follows. Given the current point Y ,

• Draw i ∼ U{1 . . . ,K} and draw X1:K\{i} ∼ q [Note here that X1:K\{i} do not necessarily need to
be independent, but more on that later], and set X1 = Y .

• Compute the estimators {Ẑ(Xk)}16k6K .

• Sample Y ∼ Cat(Ẑ(Xk)/{
∑K

i=1 Ẑ(Xi))}).

3.3. GENERATIVE MODELS AND APPROXIMATE SIMULATION 51

This procedure designs a MCMC kernel invariant w.r.t. π, defined for x ∈ Rd,A ∈ B(Rd) by

PK(x,A) =
1

N

∫ N∑
`=1

δx(dx`)
∏
j 6=`

q(dxj)
N∑
i=1

Ẑ(xi)∑N
`=1 Ẑ(x`)

1A(xi) .

Moreover, we can compute∫
π(dx)PK(x,A) = N−1

∫
π(dx)

N∑
`=1

δx(dx`)
∏
j 6=`

q(dxj)

N∑
i=1

Ẑ(xi)∑N
`=1 Ẑ(x`)

1A(xi) (3.11)

= N−1

∫ (N∑
`=1

Ẑ(x`)
) N∏
j=1

q(dxj)
N∑
i=1

Ẑ(xi)∑N
`=1 Ẑ(x`)

1A(xi) (3.12)

= N−1

∫ N∏
j=1

q(dxj)
N∑
i=1

Ẑ(xi)1A(xi) = π(A) (3.13)

The relationship to pseudo-marginal MCMC lays in the fact that one can do these computations by
defining an extending target π̄(x, k) in the case of ISIR for example, where k denotes the index of the
chosen particle in {1 . . . ,K}.

3.3 Generative models and approximate simulation

We have covered in the previous section algorithms allowing to sample exactly (or at least asymptotically
exactly) according to some target distribution π. These methods provide a way with convergence
guarantees to obtain samples from π. However, other directions have been considered in the recent
literature.

Normalizing Flows Normalizing flows [TV10; TT13; Pap+19; KPB20] are a way of building
expressive probability distributions that can serve as a proxy of the target π and provide after training
a cheap way of producing samples. Normalizing flows are built from a simple density “pushed” through
a sequence of invertible and differentiable transformations to produce a richer and more expressive
distribution. The idea is that the repeated application of even very simple transformations (thus easily
tractable) can produce a very flexible distribution in the end.

The idea is based on the change of variables formula. Let T denote a C1 diffeomorphism, that is a
continuously differentiable invertible mapping whose inverse is also continuously differentiable, and p
be a density on Rd.

Then, we can write the density of the pushforward of p by T, noted T#p or pT, as

pT(x) = p(T−1(x))JT−1(x) , (3.14)

where JT (y) denotes the absolute value of the Jacobian determinant of the C1 function T applied at
y. The pushforward density of p by T is the density of the random variable x = T(u), where u ∼ p.
Thus, as long as the Jacobian determinant is tractable and easy to evaluate, we can build pushforward
densities from a simple density p easy to sample from and any C1 diffeomorphism. The expressivity of
normalizing flows comes from the fact that one can compose many of those transformations. That is,
T = TK ◦ · · · ◦ T1, and Tk are all C1 diffeomorphisms with tractable Jacobian. The name “flow” stems
from the fact that a sample u from p is gradually transported by the sequence of mappings T1, . . . ,TK ,
while the name “normalizing” stems from the fact that a sample x from the pushforward (potentially
complex) pT goes through the inverse flow and the mappings T−1

K , . . . ,T−1
1 to the simple reference

density p often taken as a multivariate normal (hence are “normalized” in some way), see Figure 8.6
for a multivariate normal transformed into a mixture of 8 Gaussian distributions. Many works in the
recent literature have introduced different ways of building such transformations T, trading off between

52 CHAPTER 3. GENERAL BACKGROUND

Figure 3.1: Consecutive outputs of normalizing flows. Left: prior normal distribution, then successive
effect of the 5 transformations.

expressiveness and tractability of the Jacobian and the inverse T−1, see [Pap+19] for a full review.
These models however are limited. Indeed, as they build on a deterministic structure, normalizing flows
can struggle to cover and represent difficult distributions with topological constraints (see [Cor+20]) or
by essence stochastic transformations, such as diffusion processes or convolutions.

To that effect, stochastic processes linked to normalizing flows have been introduced lately in the
literature, [WKN20c; Hod+20; Thi+20b; HHS21] in order to increase efficiently the expressiveness of
such transformations without dramatic increase in the numbers of parameters.

Deep Latent Generative Models Other type of generative models considered in this thesis include
of course Deep Latent Generative Models, introduced in Section 2.3.

References

[AB04] Felix V Agakov and David Barber. “An auxiliary variational method”. In: International
Conference on Neural Information Processing. Springer. 2004, pp. 561–566.

[AC75] Samuel M Allen and John W Cahn. “Coherent and incoherent equilibria in iron-rich
iron-aluminum alloys”. In: Acta Metallurgica 23.9 (1975), pp. 1017–1026. issn: 0001-
6160. doi: https://doi.org/10.1016/0001-6160(75)90106-6. url: https://www.
sciencedirect.com/science/article/pii/0001616075901066.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein generative adversarial
networks”. In: International conference on machine learning. PMLR. 2017, pp. 214–223.

[ADH10] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. “Particle Markov chain
Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B 72.3 (2010),
pp. 269–342.

[Aga+17] Sergios Agapiou, Omiros Papaspiliopoulos, Daniel Sanz-Alonso, and AM Stuart. “Impor-
tance sampling: Intrinsic dimension and computational cost”. In: Statistical Science (2017),
pp. 405–431.

[AKS19] MS Albergo, G Kanwar, and PE Shanahan. “Flow-based generative models for Markov
chain Monte Carlo in lattice field theory”. In: Physical Review D 100.3 (2019), p. 034515.

[AKW12] Sungjin Ahn, Anoop Korattikara, and Max Welling. “Bayesian posterior sampling via
stochastic gradient Fisher scoring”. In: arXiv preprint arXiv:1206.6380 (2012).

[AL19a] C. Andrieu and S. Livingstone. “Peskun-Tierney ordering for Markov chain and process
Monte Carlo: beyond the reversible scenario”. In: arXiv preprint arXiv:1906.06197 (2019).

[AL19b] Christophe Andrieu and Samuel Livingstone. “Peskun-Tierney ordering for Markov chain
and process Monte Carlo: beyond the reversible scenario”. In: arXiv preprint arXiv:1906.06197
(2019).

[ALV+18] Christophe Andrieu, Anthony Lee, Matti Vihola, et al. “Uniform ergodicity of the iterated
conditional SMC and geometric ergodicity of particle Gibbs samplers”. In: Bernoulli 24.2
(2018), pp. 842–872.

[AM21] Ömer Deniz Akyildiz and Joaquıén Mıéguez. “Convergence rates for optimised adaptive
importance samplers”. In: Statistics and Computing 31.2 (2021), pp. 1–17.

[And+18] Christophe Andrieu, Arnaud Doucet, Sinan Yıldırım, and Nicolas Chopin. “On the
utility of Metropolis-Hastings with asymmetric acceptance ratio”. In: arXiv preprint
arXiv:1803.09527 (2018).

[Ard+19] Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Guided
Image Generation with Conditional Invertible Neural Networks. 2019. arXiv: 1907.02392
[cs.CV].

[ASW14] Sungjin Ahn, Babak Shahbaba, and Max Welling. “Distributed stochastic gradient MCMC”.
In: International conference on machine learning. PMLR. 2014, pp. 1044–1052.

[AT08] Christophe Andrieu and Johannes Thoms. “A tutorial on adaptive MCMC”. In: Statistics
and computing 18.4 (2008), pp. 343–373.

53

https://doi.org/https://doi.org/10.1016/0001-6160(75)90106-6
https://www.sciencedirect.com/science/article/pii/0001616075901066
https://www.sciencedirect.com/science/article/pii/0001616075901066
https://arxiv.org/abs/1907.02392
https://arxiv.org/abs/1907.02392

54 REFERENCES

[Aza+18] Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian Goodfellow, and Augustus Odena.
“Discriminator Rejection Sampling”. In: International Conference on Learning Representa-
tions. 2018.

[Aza+19] Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian Goodfellow, and Augustus Odena.
“Discriminator Rejection Sampling”. In: arXiv:1810.06758 (2019). eprint: 1810.06758
(stat.ML).

[BDH17] Rémi Bardenet, Arnaud Doucet, and Christopher C Holmes. “On Markov chain Monte
Carlo methods for tall data”. In: Journal of Machine Learning Research 18.47 (2017).

[BDM12] Mylène Bédard, Randal Douc, and Eric Moulines. “Scaling analysis of multiple-try MCMC
methods”. In: Stochastic Processes and their Applications 122.3 (2012), pp. 758–786.

[BDM18] Nicolas Brosse, Alain Durmus, and Eric Moulines. “The promises and pitfalls of stochastic
gradient Langevin dynamics”. In: Advances in Neural Information Processing Systems 31
(2018).

[Bes+13] Alexandros Beskos, Natesh Pillai, Gareth Roberts, Jesus-Maria Sanz-Serna, and Andrew
Stuart. “Optimal tuning of the hybrid Monte Carlo algorithm”. In: Bernoulli 19.5A (2013),
pp. 1501–1534.

[Bes94a] J.E. Besag. “Comments on “Representations of knowledge in complex systems” by U. Grenan-
der and M. Miller”. In: J. Roy. Statist. Soc. Ser. B 56 (1994), pp. 591–592.

[Bes94b] J.E. Besag. “Comments on “Representations of knowledge in complex systems” by U. Grenan-
der and M. Miller”. In: J. Roy. Statist. Soc. Ser. B 56 (1994), pp. 591–592.

[BGS15] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. “Importance weighted autoencoders”.
In: arXiv preprint arXiv:1509.00519 (2015).

[Bin+18] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman.
Pyro: Deep Universal Probabilistic Programming. 2018. arXiv: 1810.09538 [cs.LG].

[Bin+19] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, The-
ofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. “Pyro:
Deep universal probabilistic programming”. In: Journal of Machine Learning Research 20.1
(2019), pp. 973–978.

[BJ18] N. Bou-Rabee and S.-S. Jesús Marıéa. “Geometric Integrators and the Hamiltonian Monte
Carlo method”. In: Acta Numerica (2018), pp. 1–92.

[Bon+11] Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. “Dis-
placement interpolation using Lagrangian mass transport”. In: Proceedings of the 2011
SIGGRAPH Asia Conference. 2011, pp. 1–12.

[BR17] Joris Bierkens and Gareth Roberts. “A piecewise deterministic scaling limit of lifted
Metropolis–Hastings in the Curie–Weiss model”. In: Ann. Appl. Probab. 27.2 (Apr. 2017),
pp. 846–882. doi: 10.1214/16-AAP1217. url: https://doi.org/10.1214/16-AAP1217.

[Bro+11] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov
chain Monte Carlo. CRC press, 2011.

[BZM20] Ricardo Baptista, Olivier Zahm, and Youssef Marzouk. “An adaptive transport framework
for joint and conditional density estimation”. In: arXiv preprint arXiv:2009.10303 (2020).

[CDO+11] Su Chen, Josef Dick, Art B Owen, et al. “Consistency of Markov chain quasi-Monte Carlo
on continuous state spaces”. In: The Annals of Statistics 39.2 (2011), pp. 673–701.

[CDS18a] Anthony L Caterini, Arnaud Doucet, and Dino Sejdinovic. “Hamiltonian variational auto-
encoder”. In: Advances in Neural Information Processing Systems. 2018, pp. 8167–8177.

1810.06758
https://arxiv.org/abs/1810.09538
https://doi.org/10.1214/16-AAP1217
https://doi.org/10.1214/16-AAP1217

REFERENCES 55

[CDS18b] Anthony L Caterini, Arnaud Doucet, and Dino Sejdinovic. “Hamiltonian variational auto-
encoder”. In: Advances in Neural Information Processing Systems. 2018, pp. 8167–8177.

[CFG14] Tianqi Chen, Emily Fox, and Carlos Guestrin. “Stochastic gradient Hamiltonian Monte
Carlo”. In: International conference on machine learning. PMLR. 2014, pp. 1683–1691.

[Cha+18] Niladri Chatterji, Nicolas Flammarion, Yian Ma, Peter Bartlett, and Michael Jordan. “On
the theory of variance reduction for stochastic gradient Monte Carlo”. In: International
Conference on Machine Learning. PMLR. 2018, pp. 764–773.

[Che+20a] Tong Che, Ruixiang ZHANG, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan
Cao, and Yoshua Bengio. “Your GAN is Secretly an Energy-based Model and You Should
Use Discriminator Driven Latent Sampling”. In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 12275–12287. url: https://proceedings.neurips.
cc/paper/2020/file/90525e70b7842930586545c6f1c9310c-Paper.pdf.

[Che+20b] Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan
Cao, and Yoshua Bengio. “Your GAN is Secretly an Energy-based Model and You Should
use Discriminator Driven Latent Sampling”. In: arXiv preprint arXiv:2003.06060 (2020).

[CJ21] Adam D Cobb and Brian Jalaian. “Scaling Hamiltonian Monte Carlo inference for Bayesian
neural networks with symmetric splitting”. In: Uncertainty in Artificial Intelligence. PMLR.
2021, pp. 675–685.

[CL07a] Radu V Craiu and Christiane Lemieux. “Acceleration of the multiple-try Metropolis
algorithm using antithetic and stratified sampling”. In: Statistics and Computing 17.2
(2007), p. 109.

[CL07b] Radu V. Craiu and Christiane Lemieux. “Acceleration of the Multiple-Try Metropolis
algorithm using antithetic and stratified sampling”. In: Statistics and Computing 17.2
(2007), p. 109. issn: 1573-1375. doi: 10.1007/s11222-006-9009-4. url: https://doi.
org/10.1007/s11222-006-9009-4.

[CLP99] F. Chen, L. Lovász, and I. Pak. “Lifting Markov chains to speed up mixing”. In: Annual ACM
Symposium on Theory of Computing (Atlanta, GA, 1999). ACM, New York, 1999, pp. 275–
281. doi: 10.1145/301250.301315. url: https://doi.org/10.1145/301250.301315.

[CMD17] Chris Cremer, Quaid Morris, and David Duvenaud. “Reinterpreting importance-weighted
autoencoders”. In: arXiv preprint arXiv:1704.02916 (2017).

[Cor+19] Rob Cornish, Anthony L Caterini, George Deligiannidis, and Arnaud Doucet. “Relaxing
bijectivity constraints with continuously indexed normalising flows”. In: arXiv preprint
arXiv:1909.13833 (2019).

[Cor+20] Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet. “Relaxing
bijectivity constraints with continuously indexed normalising flows”. In: International
conference on machine learning. PMLR. 2020, pp. 2133–2143.

[CR10] N. Chopin and C. P. Robert. “Properties of nested sampling”. In: Biometrika 97.3 (2010),
pp. 741–755.

[Cro98] Gavin E Crooks. “Nonequilibrium measurements of free energy differences for microscop-
ically reversible Markovian systems”. In: Journal of Statistical Physics 90.5-6 (1998),
pp. 1481–1487.

[CS97] Ming-Hui Chen and Qi-Man Shao. “On Monte Carlo Methods for Estimating Ratios of
Normalizing Constants”. In: Annals of Statistics 25 (Aug. 1997). doi: 10.1214/aos/
1031594732.

[CTA19] Nicola De Cao, Ivan Titov, and Wilker Aziz. “Block Neural Autoregressive Flow”. In: UAI.
2019.

https://proceedings.neurips.cc/paper/2020/file/90525e70b7842930586545c6f1c9310c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/90525e70b7842930586545c6f1c9310c-Paper.pdf
https://doi.org/10.1007/s11222-006-9009-4
https://doi.org/10.1007/s11222-006-9009-4
https://doi.org/10.1007/s11222-006-9009-4
https://doi.org/10.1145/301250.301315
https://doi.org/10.1145/301250.301315
https://doi.org/10.1214/aos/1031594732
https://doi.org/10.1214/aos/1031594732

56 REFERENCES

[Dal17] Arnak S. Dalalyan. “Theoretical guarantees for approximate sampling from smooth and
log-concave densities”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 79.3 (2017), pp. 651–676. doi: 10.1111/rssb.12183. eprint: https://
rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssb.12183. url: https://rss.
onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12183.

[Dax+20] Erik Daxberger, Eric Nalisnick, James Allingham, Javier Antorán, and José Miguel
Hernández-Lobato. “Expressive yet tractable Bayesian deep learning via subnetwork
inference”. In: (2020).

[DB+16] Kushal Kr Dey, Sourabh Bhattacharya, et al. “On geometric ergodicity of additive and
multiplicative transformation-based Markov Chain Monte Carlo in high dimensions”. In:
Brazilian Journal of Probability and Statistics 30.4 (2016), pp. 570–613.

[DB14] Somak Dutta and Sourabh Bhattacharya. “Markov chain Monte Carlo based on deter-
ministic transformations”. In: Statistical Methodology 16 (Jan. 2014), pp. 100–116. issn:
1572-3127. doi: 10.1016/j.stamet.2013.08.006.

[DDJ06a] P. Del Moral, A. Doucet, and A. Jasra. “Sequential Monte Carlo samplers”. In: Journal of
the Royal Statistical Society: Series B 68.3 (2006), pp. 411–436.

[DDJ06b] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. “Sequential Monte Carlo samplers”. In:
Journal of the Royal Statistical Society: Series B 68.3 (2006), pp. 411–436.

[DF19] Xinqiang Ding and David J Freedman. “Learning Deep Generative Models with Annealed
Importance Sampling”. In: arXiv preprint arXiv:1906.04904 (2019).

[DHN00] Persi Diaconis, Susan Holmes, and Radford M. Neal. “Analysis of a nonreversible Markov
chain sampler”. In: Ann. Appl. Probab. 10.3 (2000), pp. 726–752. issn: 1050-5164. doi:
10.1214/aoap/1019487508. url: https://doi.org/10.1214/aoap/1019487508.

[Din+14] Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and Hartmut
Neven. “Bayesian sampling using stochastic gradient thermostats”. In: Advances in neural
information processing systems 27 (2014).

[DK16] Samuel Dodge and Lina Karam. “Understanding how image quality affects deep neural
networks”. In: 2016 eighth international conference on quality of multimedia experience
(QoMEX). IEEE. 2016, pp. 1–6.

[DK19] Arnak S Dalalyan and Avetik Karagulyan. “User-friendly guarantees for the Langevin
Monte Carlo with inaccurate gradient”. In: Stochastic Processes and their Applications
129.12 (2019), pp. 5278–5311.

[DM17] Alain Durmus and Eric Moulines. “Nonasymptotic convergence analysis for the unadjusted
Langevin algorithm”. In: The Annals of Applied Probability 27.3 (2017), pp. 1551–1587.

[DMS17] Alain Durmus, Eric Moulines, and Eero Saksman. “On the convergence of Hamiltonian
Monte Carlo”. In: Accepted for publication in Ann. Statist. (2017).

[Dou+11] Randal Douc, Aurélien Garivier, Eric Moulines, Jimmy Olsson, et al. “Sequential Monte
Carlo smoothing for general state space hidden Markov models”. In: Annals of Applied
Probability 21.6 (2011), pp. 2109–2145.

[Dou+15] Arnaud Doucet, Michael K Pitt, George Deligiannidis, and Robert Kohn. “Efficient
implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator”.
In: Biometrika 102.2 (2015), pp. 295–313.

[Dou+18] R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov chains. Springer Series in
Operations Research and Financial Engineering. Springer, Cham, 2018, pp. xviii+757.
isbn: 978-3-319-97703-4; 978-3-319-97704-1. doi: 10.1007/978-3-319-97704-1. url:
https://doi.org/10.1007/978-3-319-97704-1.

https://doi.org/10.1111/rssb.12183
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssb.12183
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssb.12183
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12183
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12183
https://doi.org/10.1016/j.stamet.2013.08.006
https://doi.org/10.1214/aoap/1019487508
https://doi.org/10.1214/aoap/1019487508
https://doi.org/10.1007/978-3-319-97704-1
https://doi.org/10.1007/978-3-319-97704-1

REFERENCES 57

[DS18] Justin Domke and Daniel R Sheldon. “Importance weighting and variational inference”. In:
Advances in neural information processing systems. 2018, pp. 4470–4479.

[DSB16] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using Real
NVP”. In: arXiv preprint arXiv:1605.08803 (2016).

[DSB17] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real
NVP. 2017. arXiv: 1605.08803 [cs.LG].

[Dua+87] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. “Hybrid Monte
Carlo”. In: Physics Letters B 195.2 (1987), pp. 216–222. issn: 0370-2693. doi: https:
//doi.org/10.1016/0370-2693(87)91197-X. url: http://www.sciencedirect.com/
science/article/pii/037026938791197X.

[Dus+20] Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine
Heller, Balaji Lakshminarayanan, and Dustin Tran. “Efficient and scalable Bayesian neural
nets with rank-1 factors”. In: International conference on machine learning. PMLR. 2020,
pp. 2782–2792.

[EM12] Tarek A El Moselhy and Youssef M Marzouk. “Bayesian inference with optimal maps”. In:
Journal of Computational Physics 231.23 (2012), pp. 7815–7850.

[Fal19] WA Falcon. “PyTorch Lightning”. In:GitHub. Note: https://github.com/PyTorchLightning/pytorch-
lightning 3 (2019).

[Foo+19] Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner.
“’In-Between’Uncertainty in Bayesian Neural Networks”. In: arXiv preprint arXiv:1906.11537
(2019).

[Foo+20] Andrew Foong, David Burt, Yingzhen Li, and Richard Turner. “On the expressiveness of
approximate inference in Bayesian neural networks”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 15897–15908.

[Fra+20] Guilherme Franca, Jeremias Sulam, Daniel P Robinson, and René Vidal. “Conformal
symplectic and relativistic optimization”. In: Journal of Statistical Mechanics: Theory and
Experiment 2020.12 (2020), p. 124008.

[FSG20] Sebastian Farquhar, Lewis Smith, and Yarin Gal. “Liberty or depth: Deep Bayesian
neural nets do not need complex weight posterior approximations”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 4346–4357.

[FSS14] Youhan Fang, Jesus-Maria Sanz-Serna, and Robert D Skeel. “Compressible generalized
hybrid Monte Carlo”. In: The Journal of chemical physics 140.17 (2014), p. 174108.

[FW12] Nial Friel and Jason Wyse. “Estimating the evidence–a review”. In: Statistica Neerlandica
66.3 (2012), pp. 288–308.

[Gal16] Yarin Gal. “Uncertainty in Deep Learning”. In: 2016.

[Gaw+21] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias
Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al.
“A survey of uncertainty in deep neural networks”. In: arXiv preprint arXiv:2107.03342
(2021).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[GC11] Mark Girolami and Ben Calderhead. “Riemann manifold Langevin and Hamiltonian
Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 73.2 (2011), pp. 123–214.

[GF21] Adrià Garriga-Alonso and Vincent Fortuin. “Exact Langevin dynamics with stochastic
gradients”. In: arXiv preprint arXiv:2102.01691 (2021).

https://arxiv.org/abs/1605.08803
https://doi.org/https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/https://doi.org/10.1016/0370-2693(87)91197-X
http://www.sciencedirect.com/science/article/pii/037026938791197X
http://www.sciencedirect.com/science/article/pii/037026938791197X

58 REFERENCES

[GG16] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning”. In: international conference on machine learning.
PMLR. 2016, pp. 1050–1059.

[GGA15] Roger B Grosse, Zoubin Ghahramani, and Ryan P Adams. “Sandwiching the marginal
likelihood using bidirectional Monte Carlo”. In: arXiv preprint arXiv:1511.02543 (2015).

[GGR97] Andrew Gelman, Walter R Gilks, and Gareth O Roberts. “Weak convergence and optimal
scaling of random walk Metropolis algorithms”. In: The annals of applied probability 7.1
(1997), pp. 110–120.

[GHK17] Yarin Gal, Jiri Hron, and Alex Kendall. “Concrete dropout”. In: Advances in neural
information processing systems 30 (2017).

[GM98] Andrew Gelman and Xiao-Li Meng. “Simulating normalizing constants: From importance
sampling to bridge sampling to path sampling”. In: Statistical science (1998), pp. 163–185.

[Goo+14a] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets”. In: Advances in
neural information processing systems 27 (2014).

[Goo+14b] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets”. In:
Proceedings of the 27th International Conference on Neural Information Processing Systems
- Volume 2. NIPS’14. Montreal, Canada: MIT Press, 2014, pp. 2672–2680.

[Goy+17] Anirudh Goyal Alias Parth Goyal, Nan Rosemary Ke, Surya Ganguli, and Yoshua Bengio.
“Variational walkback: Learning a transition operator as a stochastic recurrent net”. In:
Advances in Neural Information Processing Systems. 2017, pp. 4392–4402.

[Gra11] Alex Graves. “Practical variational inference for neural networks”. In: Advances in neural
information processing systems 24 (2011).

[GRV21] Marylou Gabrié, Grant M. Rotskoff, and Eric Vanden-Eijnden. “Adaptive Monte Carlo
augmented with normalizing flows”. In: arXiv preprint arXiv:2105.12603 (2021).

[Gus98] Paul Gustafson. “A guided walk Metropolis algorithm”. In: Statistics and computing 8.4
(1998), pp. 357–364.

[HA15] José Miguel Hernández-Lobato and Ryan Adams. “Probabilistic backpropagation for
scalable learning of Bayesian neural networks”. In: International conference on machine
learning. PMLR. 2015, pp. 1861–1869.

[HAB19] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. “Why relu networks yield
high-confidence predictions far away from the training data and how to mitigate the
problem”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 41–50.

[Har82] P. Hartman. Ordinary Differential Equations: Second Edition. Classics in Applied Mathe-
matics. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor
6, Philadelphia, PA 19104), 1982. isbn: 9780898719222. url: https://books.google.fr/
books?id=NEkkJ93O9okC.

[Hen+20] Jeremy Heng, Adrian N Bishop, George Deligiannidis, and Arnaud Doucet. “Controlled
sequential Monte Carlo”. In: The Annals of Statistics 48.5 (2020), pp. 2904–2929.

[Heu+17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. “GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium”. In: Advances in Neural Information Processing Systems. Ed. by I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.
Vol. 30. Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/paper/
2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf.

https://books.google.fr/books?id=NEkkJ93O9okC
https://books.google.fr/books?id=NEkkJ93O9okC
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf

REFERENCES 59

[HG+14a] Matthew D Hoffman, Andrew Gelman, et al. “The No-U-Turn sampler: adaptively setting
path lengths in Hamiltonian Monte Carlo.” In: J. Mach. Learn. Res. 15.1 (2014), pp. 1593–
1623.

[HG+14b] Matthew D Hoffman, Andrew Gelman, et al. “The No-U-Turn sampler: adaptively setting
path lengths in Hamiltonian Monte Carlo.” In: J. Mach. Learn. Res. 15.1 (2014), pp. 1593–
1623.

[HH80] P. Hall and C. Heyde. Martingale Limit Theory and Its Application. Academic Press, 1980.

[HHS21] Paul Hagemann, Johannes Hertrich, and Gabriele Steidl. “Stochastic normalizing flows
for inverse problems: a Markov Chains viewpoint”. In: arXiv preprint arXiv:2109.11375
(2021).

[HM20] Matthew Hoffman and Yian Ma. “Black-box variational inference as a parametric approxi-
mation to Langevin dynamics”. In: International Conference on Machine Learning. PMLR.
2020, pp. 4324–4341.

[Ho+19] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. “Flow++: Im-
proving flow-based generative models with variational dequantization and architecture
design”. In: arXiv preprint arXiv:1902.00275 (2019).

[Hod+20] Liam Hodgkinson, Chris van der Heide, Fred Roosta, and Michael W Mahoney. “Stochastic
normalizing flows”. In: arXiv preprint arXiv:2002.09547 (2020).

[Hof+19] Matthew Hoffman, Pavel Sountsov, Joshua V Dillon, Ian Langmore, Dustin Tran, and
Srinivas Vasudevan. “NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using
Neural Transport”. In: arXiv preprint arXiv:1903.03704 (2019).

[Hof17] Matthew D. Hoffman. “Learning Deep Latent Gaussian Models with Markov Chain Monte
Carlo”. In: Proceedings of the 34th International Conference on Machine Learning. Ed. by
Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research.
International Convention Centre, Sydney, Australia: PMLR, June 2017, pp. 1510–1519.

[Hor91] Alan M Horowitz. “A generalized guided Monte Carlo algorithm”. In: Physics Letters B
268.2 (1991), pp. 247–252.

[HS13] K Hukushima and Y Sakai. “An irreversible Markov-chain Monte Carlo method with skew
detailed balance conditions”. In: Journal of Physics: Conference Series. Vol. 473. 1. IOP
Publishing. 2013, p. 012012.

[HST99] Heikki Haario, Eero Saksman, and Johanna Tamminen. “Adaptive proposal distribution
for random walk Metropolis algorithm”. English. In: Computational Statistics 14.3 (1999),
pp. 375–395. issn: 0943-4062.

[Hua+18a] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. “Neural au-
toregressive flows”. In: arXiv preprint arXiv:1804.00779 (2018).

[Hua+18b] Chin-Wei Huang, Shawn Tan, Alexandre Lacoste, and Aaron C Courville. “Improving
Explorability in Variational Inference with Annealed Variational Objectives”. In: Advances
in Neural Information Processing Systems. 2018, pp. 9701–9711.

[Izm+18a] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. “Averaging weights leads to wider optima and better generalization”. In: 34th
Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018. Association For
Uncertainty in Artificial Intelligence (AUAI). 2018, pp. 876–885.

[Izm+18b] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. “Averaging weights leads to wider optima and better generalization”. In: arXiv
preprint arXiv:1803.05407 (2018).

60 REFERENCES

[Izm+20] Pavel Izmailov, Wesley J Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and
Andrew Gordon Wilson. “Subspace inference for Bayesian deep learning”. In: Uncertainty
in Artificial Intelligence. PMLR. 2020, pp. 1169–1179.

[Izm+21] Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson.
“What are Bayesian neural network posteriors really like?” In: International Conference on
Machine Learning. PMLR. 2021, pp. 4629–4640.

[JS20] He Jia and Uros Seljak. “Normalizing constant estimation with Gaussianized bridge
sampling”. In: Symposium on Advances in Approximate Bayesian Inference. PMLR. 2020,
pp. 1–14.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[KG17] Alex Kendall and Yarin Gal. “What uncertainties do we need in Bayesian deep learning
for computer vision?” In: Advances in neural information processing systems 30 (2017).

[Kha+18] Mohammad Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash
Srivastava. “Fast and scalable Bayesian deep learning by weight-perturbation in adam”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 2611–2620.

[Kin+16a] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. “Improving variational inference with inverse autoregressive flow”. In: arXiv
preprint arXiv:1606.04934 (2016).

[Kin+16b] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. “Improved variational inference with inverse autoregressive flow”. In: Advances in
neural information processing systems. 2016, pp. 4743–4751.

[Kis65] Leslie Kish. Survey sampling. English. Chichester : Wiley New York, 1965, xvi, 643 p. :
isbn: 0471109495.

[Kol+19] Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and K Gustavo. “General-
ized Sliced Wasserstein Distances”. In: NeurIPS 2019. 2019.

[KP18] Andreas Kamilaris and Francesc X Prenafeta-Boldú. “Deep learning in agriculture: A
survey”. In: Computers and electronics in agriculture 147 (2018), pp. 70–90.

[KPB19] Ivan Kobyzev, Simon Prince, and Marcus A Brubaker. “Normalizing flows: Introduction
and ideas”. In: arXiv preprint arXiv:1908.09257 (2019).

[KPB20] Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. “Normalizing flows: An intro-
duction and review of current methods”. In: IEEE transactions on pattern analysis and
machine intelligence 43.11 (2020), pp. 3964–3979.

[KW13a] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[KW13b] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[KW14] Diederik Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: International
Conference on Learning Representations. 2014.

[KW19] Diederik P Kingma and Max Welling. “An introduction to variational autoencoders”. In:
arXiv preprint arXiv:1906.02691 (2019).

[Lag+21] Evgeny Lagutin, Daniil Selikhanovych, Achille Thin, Sergey Samsonov, Alexey Naumov,
Denis Belomestny, Maxim Panov, and Eric Moulines. “Ex²MCMC: Sampling through
Exploration Exploitation”. In: arXiv preprint arXiv:2111.02702 (2021).

[Law+19] Dieterich Lawson, George Tucker, Bo Dai, and Rajesh Ranganath. “Energy-inspired models:
Learning with sampler-induced distributions”. In: arXiv preprint arXiv:1910.14265 (2019).

REFERENCES 61

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553
(2015), pp. 436–444.

[LDM15] Fredrik Lindsten, Randal Douc, and Éric Moulines. “Uniform ergodicity of the particle
Gibbs sampler”. In: Scandinavian Journal of Statistics 42.3 (2015), pp. 775–797.

[Lee+10] Anthony Lee, Christopher Yau, Michael B Giles, Arnaud Doucet, and Christopher C
Holmes. “On the utility of graphics cards to perform massively parallel simulation of
advanced Monte Carlo methods”. In: Journal of computational and graphical statistics 19.4
(2010), pp. 769–789.

[Lee11] Anthony Lee. “On auxiliary variables and many-core architectures in computational
statistics”. PhD thesis. University of Oxford, 2011.

[LFR19] Samuel Livingstone, Michael F Faulkner, and Gareth O Roberts. “Kinetic energy choice in
Hamiltonian/hybrid Monte Carlo”. In: Biometrika 106.2 (2019), pp. 303–319.

[LHS17a] Daniel Levy, Matthew D Hoffman, and Jascha Sohl-Dickstein. “Generalizing Hamiltonian
Monte Carlo with neural networks”. In: arXiv preprint arXiv:1711.09268 (2017).

[LHS17b] Daniel Levy, Matthew D Hoffman, and Jascha Sohl-Dickstein. “Generalizing Hamiltonian
Monte Carlo with neural networks”. In: arXiv preprint arXiv:1711.09268 (2017).

[LHS18] Daniel Levy, Matthew D. Hoffman, and Jascha Sohl-Dickstein. “Generalizing Hamil-
tonian Monte Carlo with Neural Networks”. In: International Conference on Learning
Representations. 2018.

[Li+16] Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. “Preconditioned
stochastic gradient Langevin dynamics for deep neural networks”. In: Thirtieth AAAI
Conference on Artificial Intelligence. 2016.

[Liu+18] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Large-scale celebfaces attributes
(celeba) dataset”. In: Retrieved August 15.2018 (2018), p. 11.

[LLC11] Faming Liang, Chuanhai Liu, and Raymond Carroll. Advanced Markov chain Monte Carlo
methods: learning from past samples. Vol. 714. John Wiley & Sons, 2011.

[LLW00] Jun S Liu, Faming Liang, and Wing Hung Wong. “The multiple-try method and local
optimization in Metropolis sampling”. In: Journal of the American Statistical Association
95.449 (2000), pp. 121–134.

[LM00] B. Laurent and P. Massart. “Adaptive estimation of a quadratic functional by model selec-
tion”. In: Ann. Statist. 28.5 (Oct. 2000), pp. 1302–1338. doi: 10.1214/aos/1015957395.
url: https://doi.org/10.1214/aos/1015957395.

[LS13] Fredrik Lindsten and Thomas B Schön. “Backward simulation methods for Monte Carlo
statistical inference”. In: Foundations and Trends® in Machine Learning 6.1 (2013),
pp. 1–143.

[Lu+17] Xiaoyu Lu, Valerio Perrone, Leonard Hasenclever, Yee Whye Teh, and Sebastian Vollmer.
“Relativistic Monte Carlo”. In: Artificial Intelligence and Statistics. PMLR. 2017, pp. 1236–
1245.

[LW17] Christos Louizos and Max Welling. “Multiplicative normalizing flows for variational
Bayesian neural networks”. In: International Conference on Machine Learning. PMLR.
2017, pp. 2218–2227.

[Ma+16] Yi-An Ma, Tianqi Chen, Lei Wu, and Emily B Fox. “A unifying framework for devising
efficient and irreversible MCMC samplers”. In: arXiv preprint arXiv:1608.05973 (2016).

[Maa+16] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. “Auxiliary
deep generative models”. In: International conference on machine learning. PMLR. 2016,
pp. 1445–1453.

https://doi.org/10.1214/aos/1015957395
https://doi.org/10.1214/aos/1015957395

62 REFERENCES

[Mad+17] Chris J Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi,
Andriy Mnih, Arnaud Doucet, and Yee Whye Teh. “Filtering variational objectives”. In:
Proceedings of the 31st International Conference on Neural Information Processing Systems.
2017, pp. 6576–6586.

[Mad+18] Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud
Doucet. “Hamiltonian descent methods”. In: arXiv preprint arXiv:1809.05042 (2018).

[Mad+19] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon
Wilson. “A simple baseline for Bayesian uncertainty in deep learning”. In: Advances in
Neural Information Processing Systems 32 (2019).

[McA+17] Rowan McAllister, Yarin Gal, Alex Kendall, Mark Van Der Wilk, Amar Shah, Roberto
Cipolla, and Adrian Weller. “Concrete problems for autonomous vehicle safety: Advantages
of Bayesian deep learning”. In: International Joint Conferences on Artificial Intelligence,
Inc. IEEE. 2017.

[MCF15] Yi-An Ma, Tianqi Chen, and Emily Fox. “A complete recipe for stochastic gradient MCMC”.
In: Advances in neural information processing systems 28 (2015).

[MFR20] Gael M Martin, David T Frazier, and Christian P Robert. “Computing Bayes: Bayesian
computation from 1763 to the 21st century”. In: arXiv preprint arXiv:2004.06425 (2020).

[MHB17] Stephan Mandt, Matthew D Hoffman, and David M Blei. “Stochastic gradient descent as
approximate Bayesian inference”. In: arXiv preprint arXiv:1704.04289 (2017).

[Mic16] Manon Michel. “Irreversible Markov chains by the factorized Metropolis filter : algorithms
and applications in particle systems and spin models”. 2016PSLEE039. PhD thesis. 2016.
url: http://www.theses.fr/2016PSLEE039/document.

[Miy+18] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. “Spectral Nor-
malization for Generative Adversarial Networks”. In: arXiv:1802.05957 (2018). eprint:
1802.05957 (cs.LG).

[MLY17] Seonwoo Min, Byunghan Lee, and Sungroh Yoon. “Deep learning in bioinformatics”. In:
Briefings in bioinformatics 18.5 (2017), pp. 851–869.

[MMT16] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. “The concrete distribution: A
continuous relaxation of discrete random variables”. In: arXiv preprint arXiv:1611.00712
(2016).

[Mon20] Pierre Monmarché. “High-dimensional MCMC with a standard splitting scheme for the
underdamped Langevin”. In: arXiv preprint arXiv:2007.05455 (2020).

[Mon81] Gaspard Monge. “Mémoire sur la théorie des déblais et des remblais”. In: Histoire de
l’Académie Royale des Sciences de Paris (1781).

[MR16] Andriy Mnih and Danilo Rezende. “Variational inference for Monte Carlo objectives”. In:
International Conference on Machine Learning. PMLR. 2016, pp. 2188–2196.

[MT96] K. Mengersen and R. L. Tweedie. “Rates of Convergence of the Hastings and Metropolis
Algorithms”. In: Ann. Statist. 24 (1996), pp. 101–121.

[Mül+19] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
“Neural importance sampling”. In: ACM Transactions on Graphics 38.145 (2019).

[Nea01a] R. M. Neal. “Annealed importance sampling”. In: Statistics and Computing 11 (2001),
pp. 125–139.

[Nea01b] Radford M Neal. “Annealed importance sampling”. In: Statistics and Computing 11.2
(2001), pp. 125–139.

[Nea03] R. M. Neal. “Slice sampling”. In: Ann. Statist. 31.3 (June 2003), pp. 705–767. doi: 10.
1214/aos/1056562461.

http://www.theses.fr/2016PSLEE039/document
1802.05957
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1214/aos/1056562461

REFERENCES 63

[Nea11] R. M. Neal. “MCMC Using Hamiltonian Dynamics”. In: Handbook of Markov Chain Monte
Carlo (2011), pp. 113–162.

[Nea12] Radford M Neal. Bayesian learning for neural networks. Vol. 118. Springer Science &
Business Media, 2012.

[Nek+20] Kirill Neklyudov, Max Welling, Evgenii Egorov, and Dmitry Vetrov. “Involutive MCMC:
a Unifying Framework”. In: arXiv preprint arXiv:2006.16653 (2020).

[Nij+20] Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. “On the anatomy
of MCMC-based maximum likelihood learning of energy-based models”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 5272–5280.

[NYC15] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 427–436.

[Oor+17] Aaron van den Oord et al. Parallel WaveNet: Fast High-Fidelity Speech Synthesis. 2017.
arXiv: 1711.10433 [cs.LG].

[Ott16] Michela Ottobre. “Markov chain Monte Carlo and irreversibility”. In: Reports on Mathe-
matical Physics 77.3 (2016), pp. 267–292.

[OZ00a] Art Owen and Yi Zhou. “Safe and Effective Importance Sampling”. In: Journal of the
American Statistical Association 95.449 (2000), pp. 135–143.

[OZ00b] Art Owen and Yi Zhou. “Safe and effective importance sampling”. In: Journal of the
American Statistical Association 95.449 (2000), pp. 135–143.

[Pap+19] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. “Normalizing flows for probabilistic modeling and inference”.
In: arXiv preprint arXiv:1912.02762 (2019).

[Pap+21] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. “Normalizing flows for probabilistic modeling and inference”.
In: Journal of Machine Learning Research 22.57 (2021), pp. 1–64.

[Par81] Giorgio Parisi. “Correlation functions and computer simulations”. In: Nuclear Physics B
180.3 (1981), pp. 378–384.

[Pas+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. “Automatic differ-
entiation in PyTorch”. In: (2017).

[Pas+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Pytorch: An imperative
style, high-performance deep learning library”. In: arXiv preprint arXiv:1912.01703 (2019).

[Pes73] Peter H Peskun. “Optimum Monte Carlo sampling using Markov chains”. In: Biometrika
60.3 (1973), pp. 607–612.

[Pra19a] Dennis Prangle. “Distilling importance sampling”. In: arXiv preprint arXiv:1910.03632
(2019).

[Pra19b] Dennis Prangle. “Distilling importance sampling”. In: arXiv preprint arXiv:1910.03632
(2019).

[RC13a] C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science & Business
Media, 2013.

[RC13b] Christian Robert and George Casella. Monte Carlo statistical methods. Springer Science &
Business Media, 2013.

https://arxiv.org/abs/1711.10433

64 REFERENCES

[RM15a] Danilo Rezende and Shakir Mohamed. “Variational Inference with Normalizing Flows”. In:
Proceedings of the 32nd International Conference on Machine Learning. Ed. by Francis
Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France:
PMLR, July 2015, pp. 1530–1538.

[RM15b] Danilo Rezende and Shakir Mohamed. “Variational inference with normalizing flows”. In:
International Conference on Machine Learning. PMLR. 2015, pp. 1530–1538.

[RMC16] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks”. In: arXiv:1511.06434 (2016).
eprint: 1511.06434 (cs.LG).

[RMW14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic backpropaga-
tion and approximate inference in deep generative models”. In: arXiv preprint arXiv:1401.4082
(2014).

[Rob07] C. Robert. The Bayesian choice: from decision-theoretic foundations to computational
implementation. Springer Science & Business Media, 2007.

[RR04] Gareth O Roberts and Jeffrey S Rosenthal. “General state space Markov chains and MCMC
algorithms”. In: Probability surveys 1 (2004), pp. 20–71.

[RR98] Gareth O Roberts and Jeffrey S Rosenthal. “Optimal scaling of discrete approximations
to Langevin diffusions”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 60.1 (1998), pp. 255–268.

[RT19] Francisco Ruiz and Michalis Titsias. “A Contrastive Divergence for Combining Variational
Inference and MCMC”. In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of
Machine Learning Research. Long Beach, California, USA: PMLR, Sept. 2019, pp. 5537–
5545.

[RT96] G. O. Roberts and R. L. Tweedie. “Geometric convergence and central limit theorems
for multidimensional Hastings and Metropolis algorithms”. In: Biometrika 83.1 (Mar.
1996), pp. 95–110. issn: 0006-3444. doi: 10.1093/biomet/83.1.95. eprint: https:
//academic.oup.com/biomet/article-pdf/83/1/95/709644/83-1-95.pdf. url:
https://doi.org/10.1093/biomet/83.1.95.

[RTB16] Rajesh Ranganath, Dustin Tran, and David Blei. “Hierarchical variational models”. In:
International Conference on Machine Learning. PMLR. 2016, pp. 324–333.

[Rub87] Donald B Rubin. “Comment: A noniterative Sampling/Importance Resampling alternative
to the data augmentation algorithm for creating a few imputations when fractions of
missing information are modest: The SIR algorithm”. In: Journal of the American Statistical
Association 82.398 (1987), pp. 542–543.

[Rui+21] Francisco JR Ruiz, Michalis K Titsias, Taylan Cemgil, and Arnaud Doucet. “Unbiased
Gradient Estimation for Variational Auto-Encoders using Coupled Markov Chains”. In:
Uncertainty in Artificial Intelligence. 2021.

[RV19] G.M. Rotskoff and E. Vanden-Eijnden. “Dynamical Computation of the Density of States
and Bayes Factors Using Nonequilibrium Importance Sampling”. In: Physical Review
Letters 122.15 (2019), p. 150602.

[SBH03] Øivind Skare, Erik Bølviken, and Lars Holden. “Improved sampling-importance resampling
and reduced bias importance sampling”. In: Scandinavian Journal of Statistics 30.4 (2003),
pp. 719–737.

[SC18] Tobias Schwedes and Ben Calderhead. “Quasi Markov chain Monte Carlo methods”. In:
arXiv preprint arXiv:1807.00070 (2018).

1511.06434
https://doi.org/10.1093/biomet/83.1.95
https://academic.oup.com/biomet/article-pdf/83/1/95/709644/83-1-95.pdf
https://academic.oup.com/biomet/article-pdf/83/1/95/709644/83-1-95.pdf
https://doi.org/10.1093/biomet/83.1.95

REFERENCES 65

[SFM20] Span Spanbauer, Cameron Freer, and Vikash Mansinghka. “Deep involutive generative
models for neural MCMC”. In: arXiv preprint arXiv:2006.15167 (2020).

[SG92] Adrian FM Smith and Alan E Gelfand. “Bayesian statistics without tears: a sampling–
resampling perspective”. In: The American Statistician 46.2 (1992), pp. 84–88.

[SK21] Yang Song and Diederik P Kingma. “How to train your energy-based models”. In: arXiv
preprint arXiv:2101.03288 (2021).

[Ski04] John Skilling. “Nested sampling”. In: AIP Conference Proceedings. Vol. 735. 1. American
Institute of Physics. 2004, pp. 395–405.

[Ski06] John Skilling. “Nested sampling for general Bayesian computation”. In: Bayesian Analysis
1.4 (2006), pp. 833–859.

[SKW15a] Tim Salimans, Diederik Kingma, and Max Welling. “Markov chain Monte Carlo and
variational inference: Bridging the gap”. In: International Conference on Machine Learning.
2015, pp. 1218–1226.

[SKW15b] Tim Salimans, Diederik Kingma, and Max Welling. “Markov chain Monte Carlo and
variational inference: Bridging the gap”. In: International Conference on Machine Learning.
2015, pp. 1218–1226.

[SM08a] R. Salakhutdinov and I. Murray. “On the quantitative analysis of deep belief networks”. In:
Proceedings of the 25th international conference on Machine Learning. 2008, pp. 872–879.

[SM08b] Ruslan Salakhutdinov and Iain Murray. “On the quantitative analysis of deep belief
networks”. In: Proceedings of the 25th international conference on Machine learning. 2008,
pp. 872–879.

[SMD14] Jascha Sohl-Dickstein, Mayur Mudigonda, and Michael R DeWeese. “Hamiltonian Monte
Carlo without detailed balance”. In: arXiv preprint arXiv:1409.5191 (2014).

[Smi17] Leslie N Smith. “Cyclical learning rates for training neural networks”. In: 2017 IEEE
winter conference on applications of computer vision (WACV). IEEE. 2017, pp. 464–472.

[SN+18] Alexander Y Shestopaloff, Radford M Neal, et al. “Sampling latent states for high-
dimensional non-linear state space models with the embedded HMM method”. In: Bayesian
Analysis 13.3 (2018), pp. 797–822.

[SN18] Alexander Y Shestopaloff and Radford M Neal. “Sampling latent states for high-dimensional
non-linear state space models with the embedded HMM method”. In: Bayesian Analysis
13.3 (2018), pp. 797–822.

[So06] Mike KP So. “Bayesian analysis of nonlinear and non-Gaussian state space models via
multiple-try sampling methods”. In: Statistics and Computing 16.2 (2006), pp. 125–141.

[Sri+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. “Dropout: a simple way to prevent neural networks from overfitting”. In: The journal
of machine learning research 15.1 (2014), pp. 1929–1958.

[ST19] Chris Sherlock and Alexandre H. Thiery. “A Discrete Bouncy Particle Sampler”. In: arXiv
preprint 1707.05200 (2019).

[SZE17] Jiaming Song, Shengjia Zhao, and Stefano Ermon. “A-NICE-MC: Adversarial training for
MCMC”. In: Advances in Neural Information Processing Systems. 2017, pp. 5140–5150.

[Tan19] Akinori Tanaka. “Discriminator optimal transport”. In: Proceedings of the 33rd International
Conference on Neural Information Processing Systems. 2019, pp. 6816–6826.

[TCV11] Konstantin S. Turitsyn, Michael Chertkov, and Marija Vucelja. “Irreversible Monte Carlo
algorithms for efficient sampling”. In: Physica D: Nonlinear Phenomena 240.4 (2011),
pp. 410–414. issn: 0167-2789. doi: https://doi.org/10.1016/j.physd.2010.10.003.
url: http://www.sciencedirect.com/science/article/pii/S0167278910002782.

https://doi.org/https://doi.org/10.1016/j.physd.2010.10.003
http://www.sciencedirect.com/science/article/pii/S0167278910002782

66 REFERENCES

[Thi+20a] Achille Thin, Nikita Kotelevskii, Christophe Andrieu, Alain Durmus, Eric Moulines, and
Maxim Panov. “Nonreversible MCMC from conditional invertible transforms: a complete
recipe with convergence guarantees”. In: arXiv preprint arXiv:2012.15550 (2020).

[Thi+20b] Achille Thin, Nikita Kotelevskii, Jean-Stanislas Denain, Leo Grinsztajn, Alain Durmus,
Maxim Panov, and Eric Moulines. “MetFlow: A New Efficient Method for Bridging the
Gap between Markov Chain Monte Carlo and Variational Inference”. In: arXiv preprint
arXiv:2002.12253 (2020).

[Thi+21a] Achille Thin, Yazid Janati El Idrissi, Sylvain Le Corff, Charles Ollion, Eric Moulines,
Arnaud Doucet, Alain Durmus, and Christian Robert. “NEO: Non Equilibrium Sampling
on the Orbits of a Deterministic Transform”. In: Advances in Neural Information Processing
Systems 34 (2021).

[Thi+21b] Achille Thin, Nikita Kotelevskii, Arnaud Doucet, Alain Durmus, Eric Moulines, and
Maxim Panov. “Monte Carlo variational auto-encoders”. In: International Conference on
Machine Learning. PMLR. 2021, pp. 10247–10257.

[Tie94] Luke Tierney. “Markov Chains for Exploring Posterior Distributions”. In: The Annals of
Statistics 22.4 (1994), pp. 1701–1728.

[Tie98] Luke Tierney. “A note on Metropolis-Hastings kernels for general state spaces”. In: Ann.
Appl. Probab. 8.1 (Feb. 1998), pp. 1–9. doi: 10.1214/aoap/1027961031. url: https:
//doi.org/10.1214/aoap/1027961031.

[Tje04] Hakon Tjelmeland. Using all Metropolis–Hastings proposals to estimate mean values. Tech.
rep. 2004.

[TK10] Surya T Tokdar and Robert E Kass. “Importance sampling: a review”. In: Wiley Interdis-
ciplinary Reviews: Computational Statistics 2.1 (2010), pp. 54–60.

[TT13] Esteban G Tabak and Cristina V Turner. “A family of nonparametric density estimation
algorithms”. In: Communications on Pure and Applied Mathematics 66.2 (2013), pp. 145–
164.

[Tur+19a] Ryan Turner, Jane Hung, Eric Frank, Yunus Saatchi, and Jason Yosinski. “Metropolis–
Hastings generative adversarial networks”. In: International Conference on Machine Learn-
ing. PMLR. 2019, pp. 6345–6353.

[Tur+19b] Ryan Turner, Jane Hung, Eric Frank, Yunus Saatchi, and Jason Yosinski. “Metropolis-
Hastings generative adversarial networks”. In: International Conference on Machine Learn-
ing. PMLR. 2019, pp. 6345–6353.

[TV10] Esteban G Tabak and Eric Vanden-Eijnden. “Density estimation by dual ascent of the
log-likelihood”. In: Communications in Mathematical Sciences 8.1 (2010), pp. 217–233.

[Vou+18] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopa-
padakis. “Deep learning for computer vision: A brief review”. In: Computational intelligence
and neuroscience 2018 (2018).

[VVN03] Jakob Verbeek, Nikos Vlassis, and Jan Nunnink. “A variational EM algorithm for large-
scale mixture modeling”. In: 9th Annual Conference of the Advanced School for Computing
and Imaging (ASCI ’03). Ed. by S. Vassiliades, L.M.J. Florack, J.W.J. Heijnsdijk, and
A. van der Steen. Heijen, Netherlands, June 2003, pp. 136–143.

[Wai19] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
2019. doi: 10.1017/9781108627771.

[Wen+20] Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh Tran, Stephan
Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. “How
good is the bayes posterior in deep neural networks really?” In: arXiv preprint arXiv:2002.02405
(2020).

https://doi.org/10.1214/aoap/1027961031
https://doi.org/10.1214/aoap/1027961031
https://doi.org/10.1214/aoap/1027961031
https://doi.org/10.1017/9781108627771

REFERENCES 67

[WI20] Andrew G Wilson and Pavel Izmailov. “Bayesian deep learning and a probabilistic perspec-
tive of generalization”. In: Advances in neural information processing systems 33 (2020),
pp. 4697–4708.

[Wil92] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine Learning 8.3-4 (1992), pp. 229–256.

[Wir+20] Peter Wirnsberger, Andrew J Ballard, George Papamakarios, Stuart Abercrombie, Sébastien
Racanière, Alexander Pritzel, Danilo Jimenez Rezende, and Charles Blundell. “Targeted
free energy estimation via learned mappings”. In: The Journal of Chemical Physics 153.14
(2020), p. 144112.

[WJ+08] Martin J Wainwright, Michael I Jordan, et al. “Graphical models, exponential families, and
variational inference”. In: Foundations and Trends® in Machine Learning 1.1–2 (2008),
pp. 1–305.

[WKN20a] Hao Wu, Jonas Köhler, and Frank Noe. “Stochastic Normalizing Flows”. In: Advances in
Neural Information Processing Systems. Vol. 33. 2020.

[WKN20b] Hao Wu, Jonas Köhler, and Frank Noé. “Stochastic Normalizing Flows”. In: Advances in
Neural Information Processing Systems (2020).

[WKN20c] Hao Wu, Jonas Köhler, and Frank Noé. “Stochastic normalizing flows”. In: Advances in
Neural Information Processing Systems 33 (2020), pp. 5933–5944.

[WKS16] Christopher Wolf, Maximilian Karl, and Patrick van der Smagt. “Variational inference
with Hamiltonian Monte Carlo”. In: arXiv preprint arXiv:1609.08203 (2016).

[WL19] Antoine Wehenkel and Gilles Louppe. “Unconstrained monotonic neural networks”. In:
Advances in Neural Information Processing Systems. 2019, pp. 1543–1553.

[WT11] MaxWelling and Yee W Teh. “Bayesian learning via stochastic gradient Langevin dynamics”.
In: Proceedings of the 28th international conference on machine learning (ICML-11).
Citeseer. 2011, pp. 681–688.

[Wu+16] Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. “On the quantitative
analysis of decoder-based generative models”. In: arXiv preprint arXiv:1611.04273 (2016).

[Xie+18] Jianwen Xie, Yang Lu, Ruiqi Gao, and Ying Nian Wu. “Cooperative learning of energy-
based model and latent variable model via MCMC teaching”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 32. 1. 2018.

[YSN21] Jiancheng Yang, Rui Shi, and Bingbing Ni. “Medmnist classification decathlon: A lightweight
automl benchmark for medical image analysis”. In: 2021 IEEE 18th International Sympo-
sium on Biomedical Imaging (ISBI). IEEE. 2021, pp. 191–195.

[Zha+19] Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson.
“Cyclical stochastic gradient MCMC for Bayesian deep learning”. In: arXiv preprint
arXiv:1902.03932 (2019).

68 REFERENCES

Part II

Contributions: Simulation and Sampling
methods

69

Chapter 4

Non-reversible MCMC from conditional
invertible transforms: a complete recipe
with convergence guarantees

Achille Thin1 , Nikita Kotelevskii2, Christophe Andrieu3, Alain Durmus4, Eric
Moulines1 , Maxim Panov5

Abstract

Markov Chain Monte Carlo (MCMC) is a class of algorithms to sample complex and high-dimensional
probability distributions. The Metropolis-Hastings (MH) algorithm, the workhorse of MCMC, provides
a simple recipe to construct reversible Markov kernels. Reversibility is a tractable property which
implies a less tractable but essential property here, invariance. Reversibility is however not necessarily
desirable when considering performance. This has prompted recent interest in designing kernels breaking
this property. At the same time, an active stream of research has focused on the design of novel versions
of the MH kernel, some nonreversible, relying on the use of complex invertible deterministic transforms.
While standard implementations of the MH kernel are well understood, aforementioned developments
have not received the same systematic treatment to ensure their validity. This paper fills the gap by
developing general tools to ensure that a class of nonreversible Markov kernels, possibly relying on
complex transforms, has the desired invariance property and lead to convergent algorithms. This leads
to a set of simple and practically verifiable conditions.

4.1 Introduction

Being able to simulate from a probability distribution, say π defined on a measurable space (Z,Z) and
referred to as the target distribution hereafter, is a ubiquitous task. Markov chain Monte Carlo methods
(MCMC) is an important body of versatile techniques to sample from π. They consist of simulating
realisations of time-homogeneous Markov chains (Zk)k∈N of invariant distribution π which possess the
property that their realised states can be used to mimic samples from π, that is Zk ∼ π approximately,
but with arbitrary precision, and approximate expectations with respect to π – more precise statements
are provided in Theorem 1 and we refer to these, for now, lose concepts as “convergence". We denote
by P the Markov kernel associated with (Zk)k∈N.

1Centre de Mathématiques Appliquées, UMR 7641, Ecole polytechnique, France
2CDISE, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
3School of Mathematics, University of Bristol, UK.
4Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France
5CS Departement, HSE University, Russian Federation

71

72 CHAPTER 4. NON-REVERSIBLE MCMC

Metropolis-Hastings (MH) is a popular strategy to design such a Markov kernel. In its most common
form, the “textbook" MH kernel samples the (k + 1)-th state Zk+1 of (Zk)k∈N as follows: (1) sample a
proposal Yk+1 ∼ Q(Zk, ·); (2) set Zk+1 = Yk+1 with probability α(Zk, Yk+1); otherwise, set Zk+1 = Zk,
where Q : Z × Z → [0, 1] is a Markov kernel and α : Z × Z → [0, 1] is the acceptance probability.
General conditions on π,Q and α in order to ensure invariance and convergence of (Zk)k∈N have been
known for some time. In the particular situation where π and {Q(z, ·), z ∈ Z} have densities π and
{q(z, ·), z ∈ Z} with respect to a common dominating measure and are positive everywhere one can
choose α(z, z′) = min{1, π(z′)q(z′, z)/[π(z)q(z, z′)]} and define a convergent algorithm.

Contribution #1: a complete recipe for (π, S)−reversible kernels. In the context of MCMC
the π−invariance property of P is traditionally the consequence of a stronger property, π−reversibility
(related to detailed balance [FSS14]), which is however more tractable in practice. The MHMarkov kernel
is designed to satisfy this property. However, there has been a re-kindled interest in the development
of “nonreversible" algorithms [TCV11; HS13; Ma+16; Ott16; BR17; Nek+20; ST19; Gus98] which
come with the promise of removing the backtracking behaviour of reversible algorithms, and hence
speed-up convergence. Our first contribution (Section 4.2) is (a) a review of (π, S)−reversibility,
related to the modified detailed balance condition [FSS14], a generalisation of reversibility behind most
so-called “nonreversible" MCMC algorithms and (b) a method generalizing the MH rule to obtain
(π, S)-reversible kernels from arbitrary proposal kernels Q. This is a generalisation of [Tie98] which aims
to provide a unifying and firm theoretical footing to recent and future contributions. The framework
encompasses, for example, both the scenarios where π and Q have common dominating measure or
when Q corresponds to a deterministic mapping.

New challenges. Novel applications have led to the development of highly sophisticated extensions
of this basic scheme, prompted in particular by recent developments in the context of probability
density representation with normalising flows [BZM20; Pra19b; Pap+19], invertible neural networks
[Ard+19]. For example, following the realisation that the textbook MH can be generalised by combining
deterministic invertible mappings of the current state and a source of randomness in the proposal
stage, some authors have proposed using complex mappings involving both non-linearities and the
composition of multiple layers [AKS19; Thi+20b; SFM20], while [ST19; Gus98] explore the use of
nonreversible Markov kernels. However it is not always clear that the resulting algorithms are convergent.
In particular application of Markov chain theory may seem difficult at first sight given the new levels of
complexity involved. Our aim in this paper is to provide users with simple to use theoretical guarantees
ensuring validity of the algorithms.

Contribution #2: easy ready-made convergence results. Proving convergence of MH
methods can be delicate in general. However, in the π-reversible case, [MT96] and [Tie94] have derived
simple conditions ensuring convergence of P in the case where π and Q share a common dominating
measure µ, for example the Lebesgue measure when Z = Rd.

Theorem 1 (Convergence of textbook MH). Assume that π is not a Dirac mass function and has
common σ−finite dominating measure µ with {Q(z, ·), z ∈ Z}. Denote π and {q(z, ·), z ∈ Z} the
resulting densities. Suppose in addition that π is not a Dirac mass and Q(z,Z+) = 1 for any z 6∈ Z+

with Z+ = {z ∈ Z : π(z) > 0}. If for any z′ ∈ Z such that π(z′) > 0 we have q(z, z′) > 0 for any z ∈ Z,
then for any f : Z→ R such that π(|f |) <∞, almost surely it holds that

lim
n→∞

n−1
n∑
i=1

f(Zi) = π(f) . (4.1)

In addition, for all z ∈ Z
lim
n→∞

‖Pn(z, ·)− π(·)‖TV = 0 . (4.2)

Our second contribution is to provide similarly simple and easy to use conditions to establish
convergence for (π, S)-reversible kernel. We translate these conditions to cover complex proposal
mechanisms based on conditional invertible neural transform ensuring that basic convergence properties

4.2. (π, S)-REVERSIBILITY AND THE GENERALIZED MH RULE 73

hold in these novel settings. As we shall see some of the results lead to simple implementation suggestions
ensuring that conclusions similar to those of Theorem 1 hold. Establishing these properties is often
overlooked and a necessary prerequisite to any more refined analysis characterising their performance,
such as quantitative finite time convergence bounds.

Contribution #3: application to particular MCMC algorithms. We show how our con-
ditions and construction can be used in practice to design (π, S)-reversible kernels which come with
convergence guarantees. We first work out a generalization of the Hamiltonian Monte Carlo algorithm
in which the gradients of the log-density in the leap frog steps are replaced by general neural trans-
forms [Nea11; SMD14]. Next, we derive and analyse two lifted Markov kernels [DHN00; CLP99; TCV11;
Nek+20] covering obtained using conditional invertible transforms on an augmented space. Our experi-
mental results (postponed to Supplementary paper) show numerically the benefits of nonreversibility in
several sampling experiments.

The proofs of the main results and some facts, followed by a ∗, can be found in the supplementary
material and, for example, (S#) refers to the #-th equation in the supplement. The standard notation
and definitions used are precisely described in the supplementary Appendix A.1 for the reader’s
convenience.

4.2 (π, S)-reversibility and the Generalized MH rule

There has recently been renewed interest in the design of π-invariant Markov kernels which are
nonreversible. In many scenarios, departing from reversibility can both improve the mixing time and
reduce the asymptotic variance of resulting estimators. It has been shown in [AL19b] that these
nonreversible Markov kernels fall under the same common framework of (π, S)-reversibility (introduced
below) which encompasses the modified (or skew) detailed balance conditions. Before proceeding further,
additional notations are needed. Let s be an involution on Z, s ◦ s = Id and S be the associated kernel
S(z,A) = 1A

(
s(z)

)
, z ∈ Z, A ∈ Z. Let µ̌ be a σ-finite measure on the product space (Z2,Z⊗2) (the

diacriticˇis used to denote measures on the product space Z2). Denote by µ̌s = (Fs)#µ̌ the pushforward
of µ̌ by the transform Fs(z, z

′) =
(
s(z′), s(z)

)
:

µ̌s(C) =

∫
1C
(
s(z′), s(z)

)
µ̌
(
d(z, z′)

)
, C ∈ Z⊗2 . (4.3)

Note that Fs is an involution Fs ◦ Fs = Id which implies that (µ̌s)s = µ̌.

Definition 2 (after [AL19b]). The measure µ̌ is s-symmetric if µ̌ = µ̌s. The sub-Markovian kernel P
is (π, S)-reversible if the measure µ̌P defined as µ̌P

(
d(z, z′)

)
= π(dz)P (z,dz′) is s-symmetric.

It is established in Section 4.6.1 that P is (π, S)-reversible if it satisfies the skew detailed balance
condition,

π(dz)P (z, dz′) = s#π(dz′)SPS(z′, dz) . (4.4)

In particular, if s#π = π and P is a Markov kernel, then π is invariant for P . We assume that the
condition s#π = π is in force in the rest of the paper. Note that for s = Id we recover the standard
detailed balance condition (see Section 4.5).

4.2.1 Generalized Metropolis-Hastings

The MH algorithm gives a method to transform any proposal Markov kernel Q into a π-reversible Markov
kernel. We derive a Generalized Metropolis-Hastings (GMH) rule to turn Q into a (π, S)-reversible
Markov kernel. We then apply this condition to the case where π(dz′) and Q(z, dz′) have a density w.r.t.
to a common dominating measure, and to the case where Q(z,dz′) = δΦ(z)(dz

′) for Φ: Z → Z. We
first establish a simple necessary and sufficient condition on the proposal kernel Q and the acceptance
probability function α : Z2 → [0, 1] for the resulting (sub-Markovian) kernel

Qα(z,dz′) := α(z, z′)Q(z, dz′) , (4.5)

74 CHAPTER 4. NON-REVERSIBLE MCMC

to be (π, S)-reversible. A subset A ⊂ Z
2 is said to be s-symmetric if (z, z′) ∈ A if and only if(

s(z′), s(z)
)
∈ A. We denote

ν̌
(
d(z, z′)

)
:= π(dz)Q(z,dz′) . (4.6)

The following result provides us with a key instrument to work with the densities of ν̌ and its pushforward
ν̌s in full generality.

Proposition 3. Set λ̌ = ν̌ + ν̌s, h = dν̌/dλ̌ and Aν̌ = {h× h ◦ Fs > 0} ∈ Z⊗2. Then, the restrictions
ν̌A(·) = ν̌(· ∩Aν̌) and ν̌sA(·) = ν̌s(· ∩Aν̌) are equivalent and ν̌A,c(·) = ν̌(· ∩Ac

ν̌) and ν̌sA,c(·) = ν̌s(· ∩Ac
ν̌)

are mutually singular. In addition, define, for (z, z′) ∈ Aν̌ , r(z, z′) = h(z, z′)/h
(
s(z′), s(z)

)
. Then,

r is a version of the density of ν̌A w.r.t. ν̌sA, i.e. r = dν̌A/dν̌
s
A and r(z, z′) = 1/r ◦ Fs(z, z′) for all

(z, z′) ∈ Aν̌ .
The following result applies Proposition 3 and extends the seminal result [Tie98, Theorem 2] to the

(π, S)-reversible case.

Theorem 4. The sub-Markovian kernel Qα in (4.5) is (π, S)-reversible if and only if the following
conditions hold.
(i) The function α is zero ν̌-a.e.on Ac

ν̌ .
(ii) The function α satisfies α(z, z′)r(z, z′) = α(s(z′), s(z)) ν̌-a.e.on Aν̌ .

Similarly to the π-reversible case, we define the generalized Metropolis-Hastings (GMH) rejection
probability by

α(z, z′) =

{
a
(
h(s(z′),s(z))
h(z,z′)

)
h(z, z′) 6= 0,

1 h(z, z′) = 0,
(4.7)

where a : R∗+ → [0, 1] satisfies a(0) = 0 and for t ∈ R∗+,

ta(1/t) = a(t) . (4.8)

Then α satisfies the conditions (i)-(ii) of Theorem 4, see Section 4.6.4. We may take for example
a(t) = min(1, t) or a(t) = t/(1 + t) which correspond to the classical Metropolis-Hastings and Barker
ratio respectively.

We can obtain the GMH Markov kernel P which is (π, S)-reversible by adding Dirac masses:

P (z,dz′) = Qα(z,dz′) + a(z)δz(dz
′) + b(z)δs(z)(dz

′) (4.9)

with a, b nonnegative, measurable satisfying a(z) = a(s(z)) and a(z) + b(z) = 1 − Qα(z,Z); see
Section 4.6.5. In the sequel, we focus on the case a(z) = 0 and b(z) = 1−Qα(z,Z).

4.2.2 GMH for particular proposal maps

We now specialize (4.7) to the case where π and Q admit a common dominating measure and the case
where Q is deterministic.

Proposal with densities. Suppose there is a common dominating measure µ on (Z,Z) such
that π(dz) = π(z)µ(dz), Q(z,dz′) = q(z, z′)µ(dz′) and that µ is invariant by s, i.e. s#µ = µ. In this
scenario, we have (see Section 4.6.6)

Aν̌ =
{
π(z)q(z, z′)× π(z′)q

(
s(z′), s(z)

)
> 0
}
. (4.10)

In addition, we obtain using (4.7) that

α(z, z′) =

{
a
[
π(z′)q(s(z′),s(z))

π(z)q(z,z′)

]
π(z)q(z, z′) 6= 0,

1 π(z)q(z, z′) = 0 .
(4.11)

Theorem 1 exploits the fact that in the π-reversible scenario the MH kernel is π-irreducible if the
condition π(z′) > 0 implies that q(z, z′) > 0 [MT96]. This result can be extended to the (π, S)-reversible
case as follows.

4.2. (π, S)-REVERSIBILITY AND THE GENERALIZED MH RULE 75

Lemma 5. The GMH Markov kernel P in (4.9) is π-irreducible if, π(z′) > 0 implies that, for all z ∈ Z,
q(z, z′) > 0 and q

(
s(z), s(z′)

)
> 0.

In the π-reversible case, [Tie94, Corollary 2] shows that the π-irreducibility condition implies that the
GMH Markov kernel P (4.9) is Harris recurrent and aperiodic. These two properties have consequences
that are very important in practice: the convergence in total variation of the iterates of the kernel
to the invariant distribution and the ergodic theorem become valid also for all the initial conditions.
These results extend to (π, S)-Markov kernels (see Section 4.6.7).

Theorem 6. Let P be defined as in (4.9), with a(z) = 0 and b(z) = 1 − Qα(z,Z). Assume that for
any z′ ∈ Z, π(z′) > 0 implies q(z, z′)× q

(
s(z), s(z′)

)
> 0 for any z ∈ Z. Suppose in addition that π is

not a Dirac mass and Q(z,Z+) = 1 for any z 6∈ Z+ with Z+ = {z ∈ Z : π(z) > 0}. The conclusions of
Theorem 1 hold.

Deterministic proposal. Suppose now that Φ is a one-to-one mapping from Z onto Z such that

Φ−1 = s ◦ Φ ◦ s . (4.12)

We consider the deterministic proposal kernel Q(z,dz′) = δΦ(z)(dz
′): when the current state is z,

the proposal is Φ(z). Condition (4.12) implies that F = s ◦ Φ is an involution. Our setting covers
involutive MCMC – corresponding to the case s = Id introduced in [Tie98, Section 2] and more recently
in [Nek+20].

In this scenario we have that (see Section 4.6.8) ν̌
(
d(z, z′)

)
= π(dz)δΦ(z)(dz

′) and ν̌s
(
d(z, z′)

)
=

π(dz′)δΦ−1(z′)(dz). The function h defined in Proposition 3 is given by h(z, z′) = 1Φ(z)(z
′)k(z) with

k(z) =
dπ

dλ
(z), λ = π + (Φ−1)#π . (4.13)

Theorem 4 is satisfied with the acceptance probability given by α
(
z,Φ(z)

)
= ᾱ(z) with

ᾱ(z) = a

(
k
(
s ◦ Φ(z)

)
k(z)

)
(4.14)

if k(z) > 0 and ᾱ(z) = 1, otherwise. Of course, there is no need to define α(z, z′) for z′ 6= Φ(z). A
special case of interest is when Z = Rd and the target distribution π(dz) = π(z)Lebd(dz) has a density
w.r.t. the Lebesgue measure on Rd. Here the dominating measure λ is given by

λ(dz) = {π(z) + π ◦ Φ(z)JΦ(z)}Lebd(dz) , (4.15)

where Jf denotes the absolute value of the Jacobian determinant of f . Then, the density k(z) is given
by

k(z) =
π(z)

π(z) + π ◦ Φ(z)JΦ(z)
(4.16)

and the acceptance ratio ᾱ(z) takes the simple form

ᾱ(z) = a

(
π ◦ Φ(z)JΦ(z)

π(z)

)
(4.17)

if π(z) 6= 0 and ᾱ(z) = 1 otherwise (see Section 4.6.9). We obtain the same acceptance ratio given
by [Nek+20, Eq. (5)], which derive this expression in the special case s = Id and thus Φ−1 = Φ is
an involution. It is perhaps striking that the acceptance ratio does not depend on s: this comes
from the fact the target distribution π is invariant by s. This setting encompasses many algorithms,
HMC [Dua+87; Nea11], and NICE-MC [SZE17] – see below, [Nek+20] and the references therein. Of
course, in most cases, (π, S)-reversible deterministic Markov kernels are not π-irreducible and Harris
recurrent. They can nevertheless be important building blocks of Markov kernels as in the HMC
construction.

76 CHAPTER 4. NON-REVERSIBLE MCMC

4.3 Applications and examples

4.3.1 Generalized Hamiltonian Dynamics

We first consider generalizations of the Hamiltonian Monte Carlo algorithm (see [Nea11; SMD14]).
These methods might also be seen as a special case of NICE (Non-linear Independent Components
Estimation) MCMC methods [SZE17; Nek+20]. The objective is to sample a distribution on Rd of
density π0 w.r.t. the Lebesgue measure. We use a data augmentation approach which consists of adding
a “momentum” variable with stationary distribution admitting a symmetric density ϕ on Rd w.r.t. the
Lebesgue measure, e.g. ϕ(−p) = ϕ(p). More precisely, on the extended state space Z = R2d, we consider
the extended target density defined by π(x, p) = π0(x)ϕ(p) and the Markov chain

(
Zi = (Xi, Pi)

)
i∈N.

The involution is taken to be s(x, p) = (x,−p). By construction, s#π = π.
We first show how to construct a (π, S)-reversible Markov kernel on R2d using modified leap-frog

integrators. Let m ∈ N and {Mi, Ni}mi=1 be C1 functions on Rd. We define a mapping Φ(x, p) =
Fm ◦ · · · ◦ F1(x, p) on R2d where Fi is given by (xi+1, pi+1) = Fi(xi, pi) where for h > 0

pi+1/2 = pi + hMi(xi) ,

xi+1 = xi + hpi+1/2 ,

pi+1 = pi+1/2 + hNi(xi+1) .

(4.18)

It is easily seen that Fi is a C1 diffeomorphism on R2d to R2d with JFi(x, p) = 1. Moreover, if for any
i ∈ {1, . . . ,m}, Mi = Nm+1−i, then s ◦ Φ ◦ s = Φ−1; see Section 4.7.1. We assume in the sequel that
this condition holds. Consider now the Markov kernel

P ((x, p),d(y, q)) = ᾱ(x, p)δΦ(x,p)(d(y, q)) (4.19)
+ (1− ᾱ(x, p))δ(x,−p)(d(y, q)) , (4.20)

with ᾱ(x, p) = a (π ◦ Φ(x, p)/π(x, p)) , (4.21)

if π(x, p) > 0 and ᾱ is equal to 1 otherwise. Using (4.17), P is (π, S)-reversible, but is deterministic and
therefore not ergodic. A standard approach to address this issue, used in the context of HMC algorithms,
is to refresh the momentum between two successive moves according to a Markov transition preserving
the distribution ϕ. A particular choice consists of sampling the velocity afresh from ϕ before applying
the kernel (4.101). More precisely, we define the Markov chain (Xi)i∈N by the following recursion. From
a state Xk, the k+1-th iterate is defined by: 1. sample Pk+1 from ϕ and set (Yk+1, Qk+1) = Φ(Xk, Pk+1);
accept Xk+1 = Yk+1 with probability ᾱ(Xk, Pk+1) and reject Xk+1 = Xk otherwise. In this case one
can check that (Xi)i∈N is a Markov chain on Rd of kernel, obtained by marginalisation of (4.9) w.r.t.
the momentum distribution,

K(x, dy) = Kα(x,dy) + {1− ᾱ(x)}δx(dy) , (4.22)

where ᾱ(x) = Kα(x,Rd) and denoting Gx(p) = proj1 ◦Φ(x, p), proj1(x, p) = x,

Kα(x,dy) =

∫
ᾱ(x, p)ϕ(p)δGx(p)(dy)dp (4.23)

If for any x ∈ Rd, p 7→ Gx(p) is a diffeomorphism on Rd, then Theorem 6 can be applied. In such case,
Kα(x,dy) = α(x, y)q(x, y) with

α(x, y) = a

(
π0(y)ϕ

{
Hx

(
G−1
x (y)

)}
π0(x)ϕ

(
G−1
x (y)

))
, (4.24)

q(x, y) = ϕ
(
G−1
x (y)

)
JG−1

x
(y) , (4.25)

and Hx(p) = proj2 ◦Φ(x, p) and proj2(x, p) = p. The expression of α(x, y) is only of theoretical interest
and is not needed to implement the algorithm. Of course, requiring that Gx is a diffeomorphism imposes
conditions on Fi, i ∈ {1, . . . ,m} and Theorem 24 (see Section 4.7.1).

4.3. APPLICATIONS AND EXAMPLES 77

Theorem 7. Assume that ϕ > 0, ϕ(−p) = ϕ(p) for all p ∈ Rd and for any i ∈ {1, . . . ,m}, Mi and Ni

are L-Lipschitz and h 6 c0/[L
1/2m], where c0 ≈ 0.3 (see Theorem 24). Then for any x ∈ Rd, p 7→ Gx(p)

is a C1-diffeomorphism.

The proof of this result is along the same lines as the proof of [DMS17, Theorem 1] which focuses
on the standard HMC algorithm.

A by-product of the proof of Theorem 7, is that, perhaps surprisingly (see (4.7.1))

q(y, x)/q(x, y) = ϕ
(
Hx ◦G−1

x (y)
)
/ϕ
(
G−1
x (y)

)
, (4.26)

implying that α (4.24) is the textbook MH acceptance ratio corresponding to q in (4.25), and the
Markov kernel K (4.22) is therefore π-reversible. It easily checked that this kernel satisfies the conditions
of Theorem 1 and the convergence results apply.

The π0-reversibility of K has the disadvantage of loosing the potentially advantageous non-
backtracking (or persistency) features of P . It is possible to recover persistency by considering
the mixture of kernels on the extended space R2d ωP + (1− ω)L where P is the deterministic kernel
(4.101) and L((x, p),d(y, q)) = K(x,dy)ϕ(q)dq. In words, we refresh independently the position and
the momentum. The amount of persistency is controlled by ω. Theorem 7 establishes π0−irreducibility
of K (see its proof), which immediately implies π-irreducibility of L; see Section 4.7.1 for a more
detailed discussion.

4.3.2 Lifted kernels

In this section, we apply the results of Section 4.2 to lifted kernels introduced in [DHN00; CLP99;
TCV11; Mic16]. As above, let Π be a target probability density on Rd w.r.t. the Lebesgue measure. We
extend the state space with a direction, i.e. we consider Z = Rd×V with V = {−1, 1} and the extended
target distribution π = Π⊗ [{δ−1 + δ1}/2]. In this scenario the involution is s(x, v) = (x,−v).

Proposal with densities. Let q−1(x, ·), q1(x, ·) be two transition densities w.r.t. the Lebesgue
measure on Rd. Consider a proposal kernel Q((x, v), d(y, w)) with density q((x, v), (y, w)) with respect
to Lebd(dy)⊗ {δ−1(dw) + δ1(dw)} given by

q
(
(x, v), (y, w)

)
=
{
ρ1v(w) + (1− ρ)1−v(w)

}
qw(x, y), (4.27)

where ρ ∈ (0, 1). In words, starting from (x, v), we either “keep" w = v with probability ρ or “flip"
w = −v the direction otherwise, and then propose a candidate y according to qw(x, ·). In the original
implementation of the lifting procedure [TCV11], ρ is set to 1; taking ρ < 1 simply prevents the
algorithm from getting “stuck" in one direction which could impede convergence of the algorithm.

From (4.7) and (4.11), the acceptance ratio α writes, for qw(x, y)Π(x) 6= 0, see Section 4.7.2,

α
(
(x, v), (y, w)

)
= a

(
q−w(y, x)Π(y)

qw(x, y)Π(x)

)
, (4.28)

and α
(
(x, v), (y, w)

)
= 1 otherwise, where a satisfies (4.8). The GMH kernel is given by (4.9) with

a(z) = 0 and b(z) = 1−Qα
(
(x, v),Z

)
. Note that if the proposal move is rejected, then the direction is

automatically flipped.
In the case q−1 = q1, then the acceptance probability α (4.28) does not depend on v, w and the

GMH kernel (4.9) can be marginalized w.r.t. v yielding the π0-reversible MH algorithm of proposal
density q1. Since ρ ∈ (0, 1), the expression for q in (4.150) implies the following result.

Proposition 8. Assume that for any y ∈ Rd, π0(y) > 0 implies q−1(x, y) > 0 and q1(x, y) > 0, for all
x ∈ Rd. Then the conditions of Theorem 6 hold, and the GMH kernel (4.9) is ergodic.

78 CHAPTER 4. NON-REVERSIBLE MCMC

Similarly to Section 4.3.1, the proposal densities qv(x, ·) are often associated to C1-diffeomorphisms
Gv,x : p 7→ Gv,x(p). From a state Xk, we sample Pk+1 from ϕ positive density on Rd and set Yk+1 =
GVk,Xk(Pk+1). In this case,

qv(x, y) = ϕ
(
G−1
v,x(y)

)
JG−1

v,x
(y) . (4.29)

We illustrate the construction above with two examples of mappings G satisfying the conditions we
consider.

Example 9 ((MALA-cIT) lifted kernel). Assume that π0 is positive and continuously differentiable.
For x ∈ Rd, we define two transforms G1,x, G−1,x. For G1,x, we set

G1,x : p 7→ x+ γ∇ log π(x) +
√

2γp , (4.30)

which corresponds to the proposal of the Metropolis Adjusted Langevin Algorithm (MALA). In particular,
for any x ∈ Rd, the transformation G1,x is a C1-diffeomorphism, with JG1,x(p) = (2γ)d/2 and

G−1
1,x(y) = {y − x− γ∇ log π(x)}/

√
2γ . (4.31)

For G−1,x we consider conditional invertible transforms [Ard+19]

G−1,x(p) = GK,x ◦ · · · ◦G1,x(p) , (4.32)

where for i ∈ {1, . . . ,K}, Gi,x splits its input into two parts (pi,1, pi,2) ∈ Rdi,1 × Rd−di,1 and applies
affine transformations between them

pi+1,1 = pi,1 � exp
(
Ri,1(pi,2, x)

)
+Mi,1(pi,2, x) ,

pi+1,2 = pi,2 � exp
(
Ri,2(pi+1,1, x)

)
+Mi,2(pi+1,1, x) .

(4.33)

Here Ri,1,Mi,1 (resp. Ri,2,Mi,2) are any functions from Rdi,1 (resp. Rd−di,1) to Rd. This structure
is an extension of the affine coupling block architecture suggested in [DSB17]. Note that for any
i ∈ {1, . . . ,K}, Gi,x is a C1-diffeomorphism on Rd of Jacobian determinant given by JGi,x(p) =
exp
(
Ri,1(p2, x) + Ri,2(p′1, x)

)
. Therefore, G−1,x is a C1-diffeomorphism with Jacobian determinant

which can be explicitly computed. (4.29) gives a nonreversible MH algorithm with convergence guarantees
provided by Proposition 8; see details in Section 4.7.3.

A specific case corresponds to the choice

Gv,x(p) = proj1 ◦Ψv(x, p) , (4.34)

where Ψ is a C1-diffeomorphism on R2d. We establish in the following result an alternative expression
for α using (4.28) and (4.29), which relies on Ψv and JΨv and for which JGv,x is not required anymore
(see Section 4.7.4).

Lemma 10. Assume that, for any (x, v) ∈ Z, the mapping Gv,x is a C1-diffeomorphism on Rd. Then,
for any x, y ∈ Rd, v, w ∈ V, the acceptance ratio α defined in (4.28)is given by

a

µ
(

Ψw
(
x,G−1

w,x(y)
))

µ
(
x,G−1

w,x(y)
) JΨw

(
x,G−1

w,x(y)
) , (4.35)

where µ(x, p) = π0(x)ϕ(p).

This result is of practical interest because in many cases, the computation of JΨv(x, p) is much
simpler than that of JGv,x(p). As an example, if Ψ is the generalized HMC transform Ψ = Fm ◦ · · · ◦ F1

where Fi is defined in (4.18), JΨv(x, p) = 1 while JGv,x(p) has no simple closed-form expression.

4.3. APPLICATIONS AND EXAMPLES 79

Deterministic proposals. Using a C1-diffeomorphism Ψ on R2d, we may also consider deterministic
moves like in Section 4.3.1. Consider the extended state space Z = R2d × V, the target distribution
π = π0⊗ϕ⊗ [{δ−1 + δ1}/2], where ϕ is a symmetric density w.r.t. Lebd, and the involution s(x, p, v) =
(x, p,−v). Define Φ

(
x, p, v

)
=
(
Ψv(x, p), v

)
. Then, it is immediate to see that s ◦ Φ ◦ s = Φ−1. We

consider the deterministic proposal kernel

Q
(
(x, p, v),d(y, q, w)

)
= δΨv(x,p)(d(y, q))δv(dw) . (4.36)

In the case, the acceptance ratio (4.14) reads for x, p ∈ Rd, v ∈ V satisfying π0(x)ϕ(p) > 0

ᾱ(x, p, v) = a
(
µ
(
Ψv(x, p)

)
JΨv(x, p)/µ(x, p)

)
, (4.37)

and is equal to 1 if µ(x, p) = 0, where µ(x, p) = π0(x)ϕ(p); see Section 4.7.5.

Example 11 (L2HMC). Assume that π0 is positive and continuously differentiable. Using the framework
depicted above, we show how the L2HMC algorithm [LHS17a] (Learning To Hamiltonian Monte Carlo)
can be turned into a nonreversible MCMC method by considering the map

Ψ(x, p) = GK ◦ · · · ◦G1(x, p) , (4.38)

where Gi = Hi ◦ Fi ◦Hi−1/2 with, for δ > 0,
• for j ∈ {i, i− 1/2}, Hj(x, p) = (x,Hj,x(p)) with

Hj,x(p) = p� exp
(
δRHj (x)

)
+ δ
[
∇ log π0(x)� exp

(
δRHj (x)

)
+MH

j (x)
]
. (4.39)

Note that Hj is a C1-diffeomorphism on R2d of Jacobian JHj (x, p) = exp
(
δRHj (x)

)
.

• Fi(x, p) =
(
Fi,p(x), p

)
, where Fi,p splits its input into two parts x1, x2 and applies affine transforma-

tions
x′1 = x1 � exp

(
δRFi,1(x2, p)

)
+ δMF

i,1(x2, p) ,

x′2 = x2 � exp
(
δRFi,2(x′1, p)

)
+ δMF

i,2(x′1, p) .
(4.40)

Clearly, Fi is a C1-diffeomorphism on R2d with JFi(x, p) = exp
(
δRFi,1(x2, p) + δRFi,2(x′1, p)

)
.

Then, Ψ defined by (4.38) is a C1-diffeomorphism whose Jacobian can be recursively computed. Then,
the kernel P (x, p, w),d(y, q, w)) given by

ᾱ(x, p, v)δΨv(x,p)(d(y, q))δv(dw) + (1− ᾱ(x, p, v))δ(x,p,−v)(d(y, q, w)) (4.41)

where ᾱ is defined in (4.37) is (π, S)-reversible. This kernel should be combined with (possibly partial)
refreshment steps as discussed in Section 4.3.1; see Section 4.7.6 for details.

80 CHAPTER 4. NON-REVERSIBLE MCMC

Supplementary Material

4.4 Notations, definitions and general Markov chain theory

In this section, we recall some basic facts and notations in a form that is useful for establishing properties
of Markov chains. Let (Z,Z) be a measurable space where Z is a countably generated σ-algebra.

Definition 12 (Kernel). A kernel on Z×Z is a map P : Z×Z → R+ such that

(i) for any A ∈ Z, z 7→ P (z,A) is measurable;

(ii) for any z ∈ Z, the function A 7→ P (z,A) is a finite measure on Z.
Definition 13 (Markov and sub-Markovian kernel). A kernel P is Markovian (or P is a Markov
kernel) if P (z,Z) = 1 for all z ∈ Z. A kernel P is submarkovian (or P is a sub-Markov kernel) if
P (z,Z) 6 1 for all z ∈ Z.

For f : Z→ R a measurable function, ν a probability distribution, and P a kernel on Z×Z, we let

ν(f)
:=∫
f(z)ν(dz) and denote for (z,A) ∈ Z×Z,

νP (A) =

∫
ν(dz)P (z,A) , Pf(z) =

∫
P (z, dz′)f(z′) .

Further, for (z,A) ∈ Z×Z define recursively for n > 2: Pn(z,A) =
∫
Pn−1(z, dz′)P (z′, A).

Definition 14 (Total variation distance). For µ, ν two probability distributions on (Z,Z) we define the
total variation distance between µ and ν by ‖µ− ν‖TV := sup|f |61 |µ(f)− ν(f)|, where the supremum is
taken over the measurable function f : Z→ R.

Definition 15 (Harmonic function). Let P be a kernel on (Z,Z). Then a non-negative measurable
function h : Z→ R is said to be harmonic if Ph = h.

Definition 16 (Irreducibility). Let ν be a non trivial σ-finite measure on
(
Z,Z

)
. A kernel P is said

to be ν-irreducible if for all (z,A) ∈ Z×Z such that ν(A) > 0 there exists n = n(z,A) ∈ N such that
Pn(z,A) > 0.

Definition 17 (Periodicity and Aperiodicity). P is periodic if there exists n ∈ N, n > 2, and Ai ∈ Z
for i ∈ 1, . . . , n, non-empty and disjoint, such that for z ∈ Ai, P (z,Ai+1) = 1 with the convention
An+1 = A1. Aperiodicity is the negation of periodicity.

General Markov chain theory provides us with powerful tools to establish validity and convergence
of MCMC algorithms, leading to basic convergence theorems such as those found in [Tie94, Theorem 1
and 3] and distilled below. We informally comment on the result below.

Theorem 18 ([Tie94]). Suppose P is such that πP = P and is π−irreducible. Then π is the unique
invariant probability distribution of P and for any f : Z→ R such that π(|f |) <∞

lim
n→∞

n−1
n∑
i=1

f(Zi) = π(f) , (4.42)

almost surely for π−almost all z ∈ Z. If in addition P is aperiodic then for π−almost all z ∈ Z
lim
n→∞

‖Pn(z, ·)− π(·)‖TV = 0 . (4.43)

The result is fairly intuitive. Invariance of π is a fixed point property ensuring that if Zi ∼ π
then Zi+1 ∼ π. π−irreducibility simply says that the Markov chain should be able to reach any set
of π−positive probability from any z ∈ Z in a finite number of iterations. Periodicity would clearly
prevent (S2) since the Markov chain would then periodically avoid visiting sets of positive π−probability.
Averaging in (S1) removes the need for this property. We note that establishing these properties is often
overlooked and a necessary prerequisite to any more refined analysis characterising their performance,
such as quantitative finite time convergence bounds as found for example in [Dal17; DK19; DM17].

4.5. STANDARD REVERSIBLE MH 81

4.5 Standard reversible MH

We summarize in this Section the results presented in [Tie98, Section 2].

Definition 19 (Reversible kernel). A sub-Markovian kernel P on (Z,Z), P is π-reversible if and only
if

ν̌
(
d(z, z′)

)
= ν̌F

(
d(z, z′)

)
, (4.44)

where ν̌
(
d(z, z′)

)
= π(dz)P (z,dz′) and ν̌F

(
d(z, z′)

)
= F#ν

(
d(z, z′)

)
= π(dz′)P (z′,dz) is the push-

foward measure of ν by F : (z, z′) 7→ (z′, z).

From a proposal Markov kernel Q, the MH method consists of considering a sub-Markovian kernel
Qα(z,dz′) = α(z, z′)Q(z,dz′). If π and Q admit a common dominating σ-finite measure µ on Z,
such that π(dz) = π(z)µ(dz) (we use the same notation for the probability and the density) and
Q(z,dz′) = q(z, z′)µ(dz′), Qα is π-reversible if

α(z, z′) =

{
a
(
π(z′)q(z′,z)
π(z)q(z,z′)

)
π(z)q(z, z′) > 0 ,

1 otherwise ,

where for any t ∈ R∗+,
ta(1/t) = a(t) . (4.45)

We may take for example a(t) = min(1, t) or a(t) = t/(1 + t) which correspond to the classical
Metropolis-Hastings and Barker ratio, respectively. To obtain a π-reversible Markov kernel P , it suffices
to add a Dirac mass, i.e.

P (z,dz′) = Qα(z,dz′) +
(
1−Qα(z,Z)

)
δz(dz

′) . (4.46)

This construction can be generalized to the case where π or Q do not admit a density. In particular,
let Φ be an invertible mapping on Z satisfying Φ−1 = Φ (i.e. Φ is an involution) and consider
Q(z,dz′) = δΦ(z)(dz

′) (when the current state is z, then the proposal is Φ(z)). Define the measure
ν = π + Φ#π and denote by h(z) = dπ/dν(z) (h is the density of π w.r.t. ν). Then, h

(
Φ(z)

)
is a

density of Φ#π w.r.t. ν. Denote A = {z ∈ Z : h(z)× h ◦ Φ(z) > 0}. Detailed balance holds if and
only if for π-almost all z ∈ A (see [Tie98]):

α
(
z,Φ(z)

)
h(z)/h ◦ Φ(z) = α

(
Φ(z), z

)
.

If Z = Rd and ν is the Lebesgue measure, we obtain α
(
z,Φ(z)

)
= ᾱ(z), where

ᾱ(z) = a

(
π ◦ Φ(z)

π(z)
JΦ(z)

)
.

4.6 Proofs of Section 4.2

4.6.1 Proof of (4.4)

Let f : Z2 → R+ be a measurable function. The condition µ̌P = µ̌sP implies

I =

∫∫
µ̌P
(
d(z, z′)

)
f(z, z′) =

∫∫
µ̌P
(
d(z, z′)

)
f
(
s(z′), s(z)

)
=

∫∫
π(dz)P (z, dz′)f

(
s(z′), s(z)

)
.

Using the change of variable z̃′ = s(z) and since s is an involution, we get

I =

∫∫
s#π(dz̃′)P

(
s(z̃′),dz′

)
f
(
s(z′), z̃′

)
.

82 CHAPTER 4. NON-REVERSIBLE MCMC

Applying now the change of variable z̃ = s(z′), we finally obtain

I =

∫∫
s#π(dz̃′)s#P

(
s(z̃′), dz̃

)
f(z̃, z̃′) .

Note that, for any z ∈ Z and A ∈ Z,

s#P (z,A) =

∫
P (z,dz′)1A

(
s(z′)

)
= PS(z,A) ,

showing that

I =

∫∫
s#π(dz̃′)PS

(
s(z̃′), dz̃

)
f(z̃, z̃′) =

∫∫
s#π(dz̃′)SPS(z̃′,dz̃)f(z̃, z̃′),

where we have used
∫
SPg(z̃′,dz̃) = Pg

(
s(z̃′)

)
.

4.6.2 Proof of Proposition 3

We set λ̌ = ν̌ + ν̌s. Note that ν̌ and ν̌s are absolutely continuous w.r.t. to λ̌. Denote by λ̌s = (Fs)#λ̌
the pushforward of λ̌ by the transform Fs(z, z

′) =
(
s(z′), s(z)

)
: for any C ∈ Z⊗2

λ̌s(C) =

∫
1C
(
s(z′), s(z)

)
λ̌
(
d(z, z′)

)
. (4.47)

Since (ν̌s)s = ν̌, λ̌ = λ̌s. This implies, for any measurable function f : Z2 → R+,∫∫
f(z, z′)λ̌

(
d(z, z′)

)
=

∫∫
f
(
s(z′), s(z)

)
λ̌
(
d(z, z′)

)
. (4.48)

We choose h to be a version of the Radon-Nikodym derivative dν̌/dλ̌ (the function is defined up to
λ̌-negligible sets). Then by definition of ν̌s,∫∫

f(z, z′)ν̌s
(
d(z, z′)

)
=

∫∫
f
(
s(z′), s(z)

)
ν̌
(
d(z, z′)

)
=

∫∫
f
(
s(z′), s(z)

)
h(z, z′)λ̌

(
d(z, z′)

)
(4.49)

=

∫∫
f
(
s(z′), s(z)

)
h(z, z′)ν̌

(
d(z, z′)

)
+

∫∫
f
(
s(z′), s(z)

)
h(z, z′)ν̌s

(
d(z, z′)

)
(4.50)

=

∫∫
f(z, z′)h

(
s(z′), s(z)

)
ν̌s
(
d(z, z′)

)
+

∫∫
f(z, z′)h

(
s(z′), s(z)

)
ν̌
(
d(z, z′)

)
(4.51)

=

∫∫
f(z, z′)h

(
s(z′), s(z)

)
λ̌
(
d(z, z′)

)
, (4.52)

showing that

h
(
s(z′), s(z)

)
=

dν̌s

dλ̌
(z, z′) . (4.53)

We then define
Aν̌ =

{
(z, z′) ∈ Z2 : h(z, z′)× h

(
s(z′), s(z)

)
> 0
}
. (4.54)

In other words, if (z, z′) 6∈ Aν̌ , then either h(z, z′) = 0 or h
(
s(z′), s(z)

)
= 0. Therefore, ν̌A,c and ν̌sA,c

are singular since B1 = {(z, z′) ∈ Z2 : h(z, z′) > 0}, B2 = {(z, z′) ∈ Z2 : h
(
s(z′), s(z)

)
> 0} are disjoint

subsets of Ac
ν̌ and ν̌(B2) = 0, ν̌(B1) = 0. In addition, since for any set B ∈ Z2,

1Aν̌∩Bh = 0 λ̌− a.e. if and only if 1Aν̌∩Bh
s = 0 λ̌− a.e.

the restrictions ν̌A and ν̌sA are equivalent. In addition,

dν̌A
dν̌s

(z, z′) =
h(z, z′)

h
(
s(z′), s(z)

) = r(z, z′) , (z, z′) ∈ Aν̌ , (4.55)

satisfying r(z, z′) = 1/r
(
s(z′), s(z)

)
.

4.6. PROOFS 83

4.6.3 Proof of Theorem 4

Define the σ-finite measure ρ̌
(
d(z, z′)

)
= α(z, z′)ν̌

(
d(z, z′)

)
and denote by ρ̌s = (Fs)#ρ̌ the pushforward

of ρ̌ by the transform Fs(z, z
′) =

(
s(z′), s(z)

)
: for any C ∈ Z⊗2

ρ̌s(C) =

∫
1C
(
s(z′), s(z)

)
ρ̌
(
d(z, z′)

)
. (4.56)

Note by definition of ν̌s that

ρ̌s
(
d(z, z′)

)
= α

(
s(z′), s(z)

)
ν̌s
(
d(z, z′)

)
(4.57)

We show below that under the stated assumptions ρ̌ = ρ̌s.
Define the function α̃(z, z′) = α

(
s(z′), s(z)

)
. Since the set Aν̌ is s-symmetric, the set Ac

ν̌ is also
s-symmetric and ν̌({(z, z′) ∈ Ac

ν̌ : α̃(z, z′) > 0}) = 0 using (i). Hence ρ̌(Ac
ν̌) = ρ̌s(Ac

ν̌) = 0.
We have by Proposition 3 and (ii),

1Aν̌ (z, z′)ρ̌
(
d(z, z′)

)
= 1Aν̌ (z, z′)α(z, z′)ν̌

(
d(z, z′)

)
= α(z, z′)r(z, z′)ν̌s

(
d(z, z′)

)
(4.58)

= 1Aν̌ (z, z′)α
(
s(z′), s(z)

)
νs
(
d(z, z′)

)
= 1Aν̌ (z, z′)ρ̌s

(
d(z, z′)

)
.

Conversely, assume that ρ̌ = ρ̌s. Since by Proposition 3, ν̌A,c and ν̌sA,c are mutually singular,
there exist B1, B2 ⊂ Ac

ν̌ (see also the proof Proposition 3) such that ν̌A,c(B2) = 0 and ν̌sA,c(B1) = 0.
Therefore, we obtain using that ρ̌ = ρ̌s and (4.57) that

ρ̌(Ac
ν̌ ∩B1) = ρ̌s(Ac

ν̌ ∩B1) = 0 . (4.59)

This result and ρ̌(Ac
ν̌ ∩B2) imply ρ̌(Ac

ν̌) = 0 and therefore ν̌({(x, z′) ∈ Ac
ν̌ : α(z, z′) > 0}) = 0 showing

(i). Finally, under the condition ρ̌ = ρ̌s and Proposition 3, (4.58) holds and (ii) follows.

4.6.4 Checking the GMH rule (4.7)

We first check (i). By Proposition 3 and (4.7), Acν = B1 ∪B2 where B1 =
{

(z, z′) ∈ Z2 : h(z, z′) = 0
}

and B2 =
{

(z, z′) ∈ Z2 : h
(
s(z′), s(z)

)
= 0
}
, and for any (z, z′) ∈ B2 \B1, α(z, z′) = 0. Therefore, to

show (i), it suffices to establish that ν̌({α = 0} ∩B1) = 0 which follows from

ν̌(B1) =

∫
1B1(z, z′)ν̌

(
d(z, z′)

)
=

∫
1B1(z, z′)h(z, z′)λ̌

(
d(z, z′)

)
= 0 .

We now check (ii). Note that by Proposition 3 and using that Fs is an involution, for (z, z′) ∈ Aν̌ ,

α(z, z′)r(z, z′) = a
(
1/r(z, z′)

)
r(z, z′) (4.60)

= a
(
r(z, z′)

)
= α

(
s(z′), s(z)

)
. (4.61)

4.6.5 Expressions for a and b

We check the conditions on the nonnegative weights a and b so that the sub-Markovian kernel

R(z,dz′) = a(z)δz(dz
′) + b(z)δs(z)(dz

′) (4.62)

is (π, S)-reversible. For f a nonnegative measurable function, we get

SRSf(z′) = a
(
s(z′)

)
f(z′) + b

(
s(z′)

)
f
(
s(z′)

)
.

84 CHAPTER 4. NON-REVERSIBLE MCMC

Hence, we obtain, for any nonnegative measurable function g,∫∫
π(dz′)SRS(z′,dz)f(z)g(z′) =

∫
π(dz′)a

(
s(z′)

)
f(z′)g(z′) +

∫
π(dz′)b

(
s(z′)

)
f
(
s(z′)

)
g(z′)

(4.63)

=

∫
π(dz)a

(
s(z′)

)
δz(dz

′)f(z)g(z′) +

∫
π(dz′)b(z′)f(z′)g

(
s(z′)

)
(4.64)

=

∫
π(dz)a

(
s(z′)

)
δz(dz

′)f(z)g(z′) +

∫
π(dz)b(z)f(z)δs(z)(dz

′)g(z′) , (4.65)

where we have used s#π = π. The result implies that

π(dz′)SRS(z′, dz) = π(dz)a
(
s(z)

)
δz(dz

′) + π(dz)b(z)δs(z)(dz
′).

Therefore, (4.4) is satisfied (e.g. π(dz′)SRS(z′,dz) = π(dz)R(z,dz′)) and R is (π, S)-reversible if
a(z) = a

(
s(z)

)
.

In addition, the total mass of Qα(z,dz′) is Qα(z,Z). The missing mass is therefore 1−Qα(z,Z).
Since the total mass of R is a(z) + b(z) we must have a(z) + b(z) = 1−Qα(z,Z).

We may for example set a(z) = 0 and b(z) = 1 − Qα(z,Z), which coincides with the classical
MH rule when s = Id. We may also take a(z) = 1 − Qα(z,Z) − b(z) where b satisfies 0 6 b(z) 6
1 − Qα(z,Z) and b(z) − b

(
s(z)

)
= Qα(s(z),Z) − Qα(z,Z). As suggested in [TCV11], we may set

b(z) = max
(
0, Qα

(
s(z),Z

)
− Qα(z,Z)

)
which is shown to be optimal w.r.t. to the Peskun ordering

in [AL19b]. Note however that this choice for b is not always easily computable.

4.6.6 Applications of (4.7): case with densities

Note that ν̌
(
d(z, z′)

)
= π(z)q(z, z′)µ⊗2

(
d(z, z′)

)
, ν̌s

(
d(z, z′)

)
= π

(
s(z′)

)
q
(
s(z′), s(z)

)
µ⊗2

(
d(z, z′)

)
,

since s#µ = µ. In addition, h = h̃/{h̃ + h̃ ◦ Fs}, h̃(z, z′) = π(z)q(z, z′) and therefore Aν̌ in (4.10) is
given by

Aν̌ =
{
π(z)q(z, z′)× π

(
s(z′)

)
q
(
s(z′), s(z)

)
> 0
}
,

and for (z, z′) ∈ Aν̌ ,
r(z, z′) =

π(z)q(z, z′)

π
(
s(z′)

)
q
(
s(z′), s(z)

) .
Therefore, we obtain using (4.7) that

α(z, z′) =

a

[
π
(
s(z′)

)
q
(
s(z′),s(z)

)
π(z)q(z,z′)

]
π(z)q(z, z′) 6= 0,

1 π(z)q(z, z′) = 0 .

(4.66)

In addition, note that using s#π = π, s#µ = µ and s is an involution, we obtain that

π = π ◦ s . (4.67)

Therefore, we obtain

α(z, z′) =

a

[
π(z′)q

(
s(z′),s(z)

)
π(z)q(z,z′)

]
π(z)q(z, z′) 6= 0,

1 π(z)q(z, z′) = 0 .

(4.68)

4.6.7 Proof of Theorem 6

We preface the proof by the following result. Define Z+ = {z ∈ Z : π(z) > 0} and set

P (z, dz′) = Qα(z, dz′) + {1−Qα(z,Z)}δs(z)(dz′) . (4.69)

where Qα(z, z′) = α(z, z′)Q(z,dz′) and α is given by (4.7). Note that P corresponds to (4.9) with
a ≡ 0 and b(z) = 1−Qα(z,Z).

4.6. PROOFS 85

Proposition 20. Consider P defined by (4.69). Assume that P is π-irreducible and Q(z,Z+) = 1 for
any z 6∈ Z+. Further, suppose that π is not a Dirac mass. Then, P is Harris recurrent.

Proof. Since π is invariant for P by Theorem 4, P is recurrent by [Dou+18, Theorem 10.1.6]. Therefore,
[Dou+18, Corollary 9.2.16, Proposition 5.2.12] show that for any bounded harmonic function h : Z→ R,
i.e. satisfying Ph = h, h = π(h), π a.e.. Then, if Ah = {h 6= π(h)}, π(Ah) = 0. By [Dou+18, Theorem
10.2.11], P is Harris recurrent if

h(z) = π(h) for any z ∈ Z . (4.70)

First, consider z ∈ Z+. Define B = {z′ : π(z′)q
(
s(z′), s(z)

)
> 0} and C = {z′ : q(z, z′) = 0}. Let A

be a π-negligible set, π(A) = 0. Using a(t) 6 t by (4.8) for any t ∈ R∗+, π(z) 6= 0 and (4.68), we get∫
1A(z′)α(z, z′)q(z, z′)µ(dz′) =

∫
1A∩B∩C(z′)α(z, z′)q(z, z′)µ(dz′) (4.71)

+

∫
1A∩B∩Cc(z′)a

[
π(z′)q

(
s(z′), s(z)

)
π(z)q(z, z′)

]
q(z, z′)µ(dz′)

6
∫
1A∩B∩Cc(z′)

π(z′)q
(
s(z′), s(z)

)
π(z)

µ(dz′)

6
∫
1A∩B∩Cc(z′)

q
(
s(z′), s(z)

)
π(z)

π(dz′) = 0 ,

where the last identity follows from π(A) = 0. Applying this identity with Ah yields to∫
α(z, z′)q(z, z′)h(z′)dµ(z′) =

∫
1Ac

h
(z′)α(z, z′)q(z, z′)h(z′)dµ(z′) = π(h)Qα(z,Z) . (4.72)

Therefore, the condition Ph(z) = h(z) for any z ∈ Z and (4.69) imply that

h(z) = π(h)Qα(z,Z) + h ◦ s(z){1−Qα(z,Z)} . (4.73)

Applying P to the previous equation, we obtain, denoting ᾱ(z) = Qα(z,Z)

h(z) = Ph(z) = π(h){Qαᾱ(z) + {1− ᾱ(z)}ᾱ ◦ s(z)}

+

∫
Qα(z,dz′)h ◦ s(z′){1− ᾱ(z′)}+ h(z){1− ᾱ(z)}

{
1− ᾱ

(
s(z)

)}
. (4.74)

Denote Ah◦s = {z ∈ Z : h ◦ s(z) 6= π(h)}. Note that, π(Ah◦s) = s#π(Ah) = π(Ah) = 0. Using (4.71),
we get for z ∈ Z+, Qα(z,Ah◦s) = 0, which implies∫

Qα(z,dz′)h ◦ s(z′){1− ᾱ(z′)} =

∫
1Ach◦s(z

′)Qα(z, dz′)h ◦ s(z′){1− ᾱ(z′)} (4.75)

= π(h)

∫
Qα(z,dz′){1− ᾱ(z′)} . (4.76)

Plugging this relation into (4.74) we obtain

h(z) = π(h)[Qαᾱ(z)+{1− ᾱ(z)}ᾱ◦s(z)]+π(h)[ᾱ(z)−Qαᾱ(z)]+h(z){1− ᾱ(z)}{1− ᾱ◦s(z)} . (4.77)

Using straightforward algebra, the previous identity implies

{π(h)− h(z)}{ᾱ(z) + ᾱ ◦ s(z)− ᾱ(z)× ᾱ ◦ s(z)} = 0.

Since P is π-irreducible and π is not a Dirac mass, ᾱ(z) 6= 0, we get that for all z ∈ Z+,

h(z) = π(h) . (4.78)

86 CHAPTER 4. NON-REVERSIBLE MCMC

Consider now the case z 6∈ Z+. Using that Q(z,Z+) by assumption and α(z, z′) = 1 by (4.68) for
any z′ ∈ Z, we get

h(z) = Ph(z) =

∫
Z+

q(z, z′)h(z′)µ(z′) =

∫
Z+

{q(z, z′)h(z′)/π(z′)}π(z′)µ(z′) = π(h) . (4.79)

Combining this result with (4.78) completes the proof of (4.70).

Proposition 21. Assume the conditions of Theorem 6. Then for any A ∈ Z such that π(A) > 0, we
have

P (z,A) > 0 for any z ∈ Z . (4.80)

Proof. Consider first the case z ∈ Z+ = {z ∈ Z : π(z) > 0}. Then, by (4.68) and the condition if
π(z′) > 0, then q(z̃, z′)× q

(
s(z̃), s(z′)

)
> 0 for any z̃ ∈ Z, we have

P (z,A) >
∫
1A∩Z+(z′)a

[
π(z′)q

(
s(z′), s(z)

)
π(z)q(z, z′)

]
q(z, z′)µ(dz′) > 0 , (4.81)

since π(A) > 0 implies that µ(A ∩ Z+) > 0. Second consider the case z 6∈ Z+. Then, α(z, z′) = 1 for
any z′ ∈ Z and we get

P (z,A) >
∫
1A∩Z+(z′)q(z, z′)µ(dz′) > 0 , (4.82)

which concludes the proof of (4.80).

Proof of Theorem 6. π-irreducibility of P follows from Proposition 21. We show that P is π-irreducible
and aperiodic. Indeed, this result and [Dou+18, Theorem 7.2.1, Theorem 11.3.1] imply (S2) for all
z ∈ Z. Finally, [Dou+18, Corollary 9.2.16, Proposition 5.2.14] establish (S1) for all z ∈ Z.

The fact that P is aperiodic is a direct consequence of (4.80) and [Dou+18, Theorem 9.3.10].

4.6.8 Proofs of (4.13) and (4.14)

Consider ν̌
(
d(z, z′)

)
= π(dz)δΦ(z)(dz

′), where Φ is an invertible mapping on Z satisfying Φ−1 = s◦Φ◦s.
For any measurable function f : Z2 → R+, we get∫∫

ν̌s
(
d(z, z′)

)
f(z, z′) =

∫∫
ν̌
(
d(z, z′)

)
f
(
s(z′), s(z)

)
=

∫
π(dz)f

(
s ◦ Φ(z), s(z)

)
(4.83)

=

∫
s#π(dz′)f(s ◦ Φ ◦ s(z′), z′) =

∫∫
π(dz′)δΦ−1(z′)(dz)f(z, z′) . (4.84)

Define

λ̌
(
d(z, z′)

)
= ν̌

(
d(z, z′)

)
+ ν̌s

(
d(z, z′)

)
= π(dz)δΦ(z)(dz

′) + π(dz′)δΦ−1(z′)(dz) . (4.85)

Set λ = π + Φ−1
π and define k(z) = (dπ/dλ)(z) . Note that for any measurable function f : Z2 → R+,∫
f(z, z′)λ̌

(
d(z, z′)

)
=

∫
π(dz)f

(
z,Φ(z)

)
+

∫
π(dz′)f

(
Φ−1(z′),Φ ◦ Φ−1(z′)

)
(4.86)

=

∫
f
(
z,Φ(z)

)
λ(dz) . (4.87)

Then, for any measurable function f : Z2 → R+, we get since k(z) = dπ/dλ(z),∫∫
ν̌
(
d(z, z′)

)
f(z, z′) =

∫
π(dz)f

(
z,Φ(z)

)
=

∫
k(z)f

(
z,Φ(z)

)
λ(dz) . (4.88)

4.6. PROOFS 87

On the other hand,∫∫
ν̌
(
d(z, z′)

)
f(z, z′) =

∫
h(z, z′)f(z, z′)λ̌

(
d(z, z′)

)
=

∫
h
(
z,Φ(z)

)
f
(
z,Φ(z)

)
λ(dz) . (4.89)

showing that h
(
z,Φ(z)

)
= (dν̌/dλ̌)

(
z,Φ(z)

)
= k(z) λ-a.e. . Setting z′ = s(z) and using Φ−1 = s ◦Φ ◦ s,

we get
h
(
s ◦ Φ(z), s(z)

)
= h(s ◦ Φ ◦ s(z′), z′) = h(Φ−1(z′), z′)

Setting now z′′ = Φ−1(z′), i.e. z′′ = Φ−1 ◦ s(z) = s ◦ Φ(z), we finally obtain

h
(
s ◦ Φ(z), s(z)

)
= h

(
z′′,Φ(z′′)

)
= k(z′′) = k

(
Φ−1 ◦ s(z)

)
= k

(
s ◦ Φ(z)

)
.

The proof of (4.13) and (4.14) is concluded using Theorem 4.

4.6.9 Proof of (4.17)

We now consider the case Z = Rd and π(dz) = π(z)dz. We first identify the dominating measure λ
defined in (4.13). For any nonnegative measurable function f ,

λ(f) =

∫
f(z)π(z)dz +

∫
f ◦ Φ−1(z)π(z)dz (4.90)

=

∫
f(z)π(z)dz +

∫
f(z)π ◦ Φ(z)JΦ(z)dz . (4.91)

Hence, λ(dz) = λ(z)dz with
λ(z) = π(z) + π ◦ Φ(z)JΦ(z) . (4.92)

Plugging this expression in (4.13), we get that

k(z) =
dπ

dλ
(z) =

π(z)

π(z) + π ◦ Φ(z)JΦ(z)
. (4.93)

We have for any function nonnegative measurable function f ,

s#π(f) =

∫
π(z)f ◦ s(z)dz =

∫
π ◦ s(z)Js(z)f(z)dz, (4.94)

which implies since s#π = π, that π ◦ s(z) = π(z)/Js(z) Lebd-a.e.. Hence, we get that

k
(
s ◦ Φ(z)

)
=

π
(
s ◦ Φ(z)

)
π
(
s ◦ Φ(z)

)
+ π

(
Φ ◦ s ◦ Φ(z)

)
JΦ

(
s ◦ Φ(z)

)
=

π ◦ Φ(z)

π ◦ Φ(z) + π(z)ρΦ(z)
, (4.95)

where we have set

ρΦ(z) =
JΦ

(
s ◦ Φ(z)

)
Js
(
Φ(z)

)
Js(z)

. (4.96)

Since Φ ◦ s ◦ Φ(z) = s(z), we get that

JΦ

(
s ◦ Φ(z)

)
Js
(
Φ(z)

)
JΦ(z) = Js(z),

which implies that
ρΦ(z) = 1/JΦ(z) .

Plugging this expression into (4.95), we finally get that

k
(
s ◦ Φ(z)

)
=

π ◦ Φ(z)JΦ(z)

π(z) + π ◦ Φ(z)JΦ(z)
.

Combining this result with (4.14) and (4.93) concludes the proof of (4.17).

88 CHAPTER 4. NON-REVERSIBLE MCMC

4.7 Proofs of Section 4.3

4.7.1 Generalized Hamiltonian Monte Carlo algorithms

Consider the two following assumptions:

NICE1. For any i ∈ {1, . . . ,m}, Nm+1−i = Mi.

NICE2. For any i ∈ {1, . . . ,m}, Mi and Ni are L-Lipschitz and h 6 c0/[L
1/2m], where c0 ≈ 0.3.

Lemma 22. Assume NICE1. Then, s ◦ Φ ◦ s = Φ−1.1

Proof. Denote for i ∈ {1, . . . ,m}, Fi = ΨNi ◦ Υ ◦ ΨMi , where Υ(x, p) = (x + hp, p), ΨM (x, p) =(
x, p+ hM(x)

)
and ΨN (x, p) =

(
x, p+ hN(x)

)
. Each of those transforms verify

s ◦Υ ◦ s = Υ−1 , s ◦ΨM ◦ s = Ψ−1
M , s ◦ΨN ◦ s = Ψ−1

N . (4.97)

Then, s ◦ Fi ◦s = Ψ−1
Ni
◦Υ−1 ◦Ψ−1

Mi
and thus,

s ◦ Φ ◦ s = Ψ−1
Nm
◦Υ−1 ◦Ψ−1

Mm
◦ · · · ◦Ψ−1

N1
◦Υ−1 ◦Ψ−1

M1
. (4.98)

On the other hand,

Φ−1 = F−1
1 ◦ · · · ◦ F−1

m = Ψ−1
M1
◦Υ−1 ◦Ψ−1

N1
◦ · · · ◦Ψ−1

Mm
◦Υ−1 ◦Ψ−1

Nm
. (4.99)

Applying NICE1 concludes the proof.

Reversibility vs. persistency
2 In Subsection 4.3.1 we define the deterministic Markov kernel on Z,

P
(
(x, p); d(x′, p′)

)
= ᾱ(x, p)δΦ(x,p)

(
d(x′, p′)

)
+
(
1− ᾱ(x, p)

)
δ(x,−p)

(
d(x′, p′)

)
, (4.100)

where ᾱ(x, p) is given by (4.21). Such kernels are most likely not ergodic and the momentum must be
refreshed in order to lead to an ergodic Markov chain

(
Zi = (Xi, Pi)

)
i∈N. We focus on “full refreshment",

that is the scenario where the momentum is drawn afresh from its stationary distribution before applying
P , in which case it can be checked that (Xi)i∈N is a Markov chain of (marginal) Markov kernel,

K(x,dy) = Kα(x,dy) + {1−Kα(x,Rd)}δx(dy) , (4.101)

where Kα(x,dy) =
∫
ᾱ(x, p)ϕ(p)δGx(p)(dy)dp with Gx(p) = proj1 ◦Φ(x, p), proj1(x, p) = x. Sampling

from K is described in Algorithm 1. It is also the case that (Xi)i∈N is time-reversible (see e.g. [Dua+87]),
which has the disadvantage of loosing the potentially advantageous persistency features of P . It is
possible to recover persistency by considering the mixture of kernels

T := ωP + (1− ω)L (4.102)

for ω ∈ [0, 1], where L
(
(x, p),d(y, q)

)
= K(x,dy)ϕ(q)dq. The kernel L refreshes independently the

position x and the momentum p. Since the target distribution is the product of π0 and ϕ (thus the
position and the momentum are independent), it is easily checked as well that L leaves π-invariant since

πL
(
d(y, q)

)
=

∫
π0(dx)K(x,dy)ϕ(p)dpϕ(q)dq = π0(dy)ϕ(q)dq = π

(
d(y, q)

)
. (4.103)

Note further that L is π-reversible as K is π0-reversible. In what follows we establish π0−irreducibility of
K, and in particular that Proposition 21 holds, which immediately implies π0⊗ (ϕ×Leb)−irreducibility
of T and allows us to apply Theorem S79 and conclude about convergence. Sampling from T is
described in Algorithm 2. In future work we will consider the scenario where p is updated using partial
refreshment such as suggested in [Hor91], for example by using an AR(1) process when ϕ is a normal
distribution, which requires an extension of our results; see Algorithm 3.

1This condition is missing in the main text due to a late error with our versioning system.
2We follow the order of the main text here, but this discussion should be after the proofs of the following subsections.

4.7. PROOFS 89

Proof of (4.24) and Theorem 7

We first establish the elementary equation (4.24).

Lemma 23. Assume that for each x ∈ Rd, Gx : p 7→ proj1 ◦Φ(x, p) is a C1-diffeomorphism. Then,
Kα(x,dy) has a density Kα(x,dy) = α(x, y)q(x, y)dy where

α(x, y) = a

(
Π(y)ϕ

{
Hx

(
G−1
x (y)

)}
Π(x)ϕ

(
G−1
x (y)

))
, (4.104)

q(x, y) = ϕ(G−1
x (y))JG−1

x
(y) . (4.105)

Proof. First by (4.21), for any (x, p) ∈ R2d, we have by definition

Kαf(x) =

∫
ᾱ(x, p)ϕ(p)f

(
Gx(p)

)
dp =

∫
a

(
π ◦ Φ(x, p)

π(x, p)

)
ϕ(p)f

(
Gx(p)

)
dp . (4.106)

Then, using the change of variable y = Gx(p), we obtain

Kαf(x) =

∫
a

(
π ◦ Φ

(
x,G−1

x (y)
)

π
(
x,G−1

x (y)
))

ϕ
(
G−1
x (y)

)
JG−1

x
(y)f(y)dy , (4.107)

which concludes the proof of (4.24) since π = π0 ⊗ ϕ.

We now prove Theorem 7 which gives conditions on the mappings {Mi, Ni}mi=1 that ensure that for
all x ∈ Rd, Gx is a C1-diffeomorphism.

Theorem 24. Assume NICE2. Then, for any x ∈ Rd, the function Gx(p) = proj1 ◦Φ(x, p) is a C1

diffeomorphism. Moreover, the GMH kernel based on NICE transitions is ergodic.

We preface the proof by some auxiliary results. Recall that one step of the NICE transition is given
by Fi(xi, pi) = (xi+1, pi+1), where:

pi+1/2 = pi + hMi(xi),

xi+1 = xi + hpi+1/2,

pi+1 = pi+1/2 + hNi(xi+1).

(4.108)

Denote

Λ(j) = Fj ◦ · · · ◦ F1 . (4.109)

Lemma 25. For all k ∈ N∗, we get

xk = x1 + (k − 1)hp1 + h2
k−1∑
i=1

(k − i)Mi(xi) + h2
k−2∑
i=1

(k − 1− i)Ni(xi+1) , (4.110)

pk = p1 + h
k−1∑
i=1

Mi(xi) + h
k−1∑
i=1

Ni(xi+1) . (4.111)

Proof. The proof proceeds by induction. The assertion is obviously true for k = 2. Let us suppose that

90 CHAPTER 4. NON-REVERSIBLE MCMC

the assertion holds true for some k ∈ N∗.

pk+1/2 = pk + hMk(xk) = p1 + h

k∑
i=1

Mi(xi) + h

k−1∑
i=1

Ni(xi+1), (4.112)

xk+1 = xk + hpk+1/2 (4.113)

= x1 + (k − 1)hp1 + h2
k−1∑
i=1

(k − i)Mi(xi) + h2
k−2∑
i=1

(k − 1− i)Ni(xi+1) (4.114)

+ h

(
p1 + h

k∑
i=1

Mi(xi) + h
k−1∑
i=1

Ni(xi+1)

)
(4.115)

= x1 + khp1 + h2
k∑
i=1

(k + 1− i)Mi(xi) + h2
k−1∑
i=1

(k − i)Ni(xi+1), (4.116)

pk+1 = pk+1/2 + hNk(xk+1) = p1 + h
k∑
i=1

Mi(xi) + h
k∑
i=1

Ni(xi+1). (4.117)

This concludes the proof.

Denote for all (x1, p1) ∈ R2d,

Gx1(p1) = x1 +mhp1 + h2Θm(x1, p1), (4.118)

Θm(x1, p1) =
m∑
i=1

(m+ 1− i)Mi(xi) +
m−1∑
i=1

(m− i)Ni(xi+1). (4.119)

Since the mappings {Mk}mk=1, {Nk}mk=1 are continuously differentiable, the mapping Ξk is continu-
ously differentiable.

Lemma 26. For (x1, p1), (x̃1, p̃1) ∈ R2d, denote (xk+1, pk+1), (x̃k+1, p̃k+1) the states obtained after k
NICE-based transitions. Under the Lipschitz constraint L, we have

‖xk+1 − x̃k+1‖+ L−1/2‖pk+1 − p̃k+1‖ 6
{

1 + hL1/2ϑ1

(
hL1/2

)}k {
‖x1 − x̃1‖+ L−1/2 ‖p1 − p̃1‖

}
,

(4.120)
where ϑ1 (s) = 2 + s+ s2.

Proof. We show this result for k = 1 and the apply a straightforward induction. For k = 1, we have

‖x2 − x̃2‖ =
∥∥x1 + h2M1 (x1) + hp1 −

{
x̃1 + h2M1 (x̃1) + hp̃1

}∥∥ (4.121)

6
(
1 + h2L

)
‖x1 − x̃1‖+ h ‖p1 − p̃1‖ . (4.122)

Moreover, we have

‖p2 − p̃2‖ = ‖p1 − p̃1 − h {N1 (x2) +M1 (x1)}+ h {N1 (x̃2) +M1 (x̃1)}‖ (4.123)
6 ‖p1 − p̃1‖+ hL {‖x̃2 − x2‖+ ‖x̃1 − x1‖} (4.124)

6
(
1 + h2L

)
‖p1 − p̃1‖+ hL

(
2 + h2L

)
‖x1 − x̃1‖ . (4.125)

Summing the two previous expression, we get the desired result for k = 1.

Lemma 27. For any h > 0, we have

sup
(x,p,v)∈R3d

{‖Θm(x, p)−Θm(x, v)‖ /‖p− v‖} 6 (m/h)
{(

1 + hL1/2ϑ1 (hL)
)m
− 1
}
. (4.126)

4.7. PROOFS 91

Proof. By Lemma 26, we have that, for any (x, p, v) ∈ R3d,

‖ proj1 ◦Λ(m)(x, p)− proj1 ◦Λ(m)(x, v)‖ 6
{

1 + hL1/2ϑ1

(
hL1/2

)}m
L−1/2‖p− v‖ . (4.127)

Denote Λ
(i)
1 = proj1 ◦Λ(i) and as a convention Λ

(0)
1 = proj1. We obtain

‖Θm(x, p)−Θm(x, v)‖ (4.128)

6 L

(
m−1∑
i=1

2(m+ 1− i)‖Λ(i−1)
1 (x, p)− Λ

(i−1)
1 (x, v)‖+ ‖Λ(m−1)

1 (x, p)− Λ
(m−1)
1 (x, v)‖

)
(4.129)

6 L1/2

(
m−1∑
i=1

2(m+ 1− i)
{

1 + hL1/2ϑ1

(
hL1/2

)}i−1
+
{

1 + hL1/2ϑ1

(
hL1/2

)}m−1
)
‖p− v‖

(4.130)

6 2mL1/2
{(

1 + hL1/2ϑ1

(
hL1/2

))m
− 1
}
/
(
hL1/2ϑ1

(
hL1/2

))
‖p− v‖ (4.131)

6 (m/h)
{(

1 + hL1/2ϑ1

(
hL1/2

))m
− 1
}
‖p− v‖ , (4.132)

as ϑ1

(
hL1/2

)
> 2.

We can now prove Theorem 24.

Proof. Note that for any h > 0, m ∈ N∗, we have(
1 + hL1/2ϑ1

(
hL1/2

))m
− 1 6 exp

{
hL1/2mϑ1

(
hL1/2m

)}
− 1 , (4.133)

as ϑ1 is non decreasing. The function c → ecϑ1(c) is continuous and strictly increasing, from 0 to ∞
on R, thus ecϑ1(c) = 2 admits a unique solution, for c0 ≈ 0.29. For c < c0, we have ecϑ1(c) < 2. In
particular, if h < h0(L, k) = c0/L

1/2m, then{(
1 + hL1/2ϑ1

(
hL1/2k

))m
− 1
}
< 1 . (4.134)

We first prove that, for all x1 ∈ Rd,

the function p 7→ p+ h/mΘm(x1, p) is one-to-one. (4.135)

By Lemma 27, there exists 0 < κ < 1 such that for all p, v ∈ Rd,

‖Hy1(p)−Hy1(v)‖ 6 h

m
‖Θm(x1, p)−Θm(x1, v)‖ 6 κ‖p− v‖ ,

where Hy1 : p 7→ y1 − h/mΘm(x1, p). Hence, by the Banach fixed point theorem, for any y1 ∈ Rd, Hy1

has a unique fixed point p1 and

y1 = p1 +
h

m
Θm(x1, p1)

showing (4.135). Hence
p 7→ Gx1(p) = x1 +mhp+ h2Θm(x1, p)

is one-to-one. Since in addition Θm is continuously differentiable and the Jacobian of Gx1 is invertible,
the function Gx is a C1 diffeomorphism.

92 CHAPTER 4. NON-REVERSIBLE MCMC

Proof of (4.26)

The result (4.26) is directly linked to Theorem 28 which ensures convergence of the Markov kernel
based on NICE proposals.

Theorem 28. Assume NICE1 and NICE2. Then, the Markov kernel K defined in (4.101) is a
Π-reversible MH kernel with transition density

q(x, y) = ϕ
(
G−1
x (y)

)
JG−1

x
(y) , (4.136)

and acceptance probability

α(x, y) = a

(
Π(y)q(y, x)

Π(x)q(x, y)

)
. (4.137)

In addition, Theorem 1 applies.

Proof. Note that for all (x, p) ∈ R2d,

Φ−1 ◦ Φ(x, p) = Φ−1
(
Gx(p), Hx(p)

)
= (x, p), (4.138)

where we have used Gx(p) = proj1 ◦Φ(x, p) and Hx(p) = proj2 ◦Φ(x, p). Under NICE2, for any x ∈ Rd,
p 7→ Gx(p) is a diffeomorphism. Then, plugging y = Gx(p), p = G−1

x (y) in (4.138), we obtain

Φ−1
(
y,Hx ◦G−1

x (y)
)

=
(
x,G−1

x (y)
)
. (4.139)

Under NICE1, s ◦ Φ ◦ s = Φ−1. Then, we get

Φ
(
y,−Hx ◦G−1

x (y)
)

=
(
x,−G−1

x (y)
)
. (4.140)

Hence Gy
(
−Hx ◦G−1

x (y)
)

= x or equivalently, −Hx ◦G−1
x (y) = G−1

y (x). Since ϕ is even, this implies

ϕ
(
Hx ◦G−1

x (y)
)

= ϕ
(
G−1
y (x)

)
. (4.141)

Recall that JΦ(x, p) = 1, for all (x, p) ∈ R2d. Using again −Hx ◦G−1
x (y) = G−1

y (x) in (4.141), we get

Φ
(
y,G−1

y (x)
)

=
(
x,−G−1

x (y)
)
. (4.142)

Using the chain rule for Jacobian matrices, we get

JG−1
y

(x) = JG−1
x

(y). (4.143)

Combining (4.141) and (4.143) leads to (4.26) by noting that

q(y, x)

q(x, y)
=
ϕ
(
Hx ◦G−1

x (y)
)

ϕ
(
G−1
x (y)

) . (4.144)

Hence, the acceptance ratio α coincides with the standard MH ratio and the marginal Markov kernel
K is thus π0-reversible. We also note that q(x, y) satisfies the conditions of Theorem 6 given the
assumptions on ϕ and Gx. Moreover, K is Π-irreducible, by Theorem 7. Then, Theorem 1 applies.

Implementation details

Algorithm 1 presents the methodology for sampling according to the kernel K (4.22), which is Π-
reversible.

4.7. PROOFS 93

Algorithm 1 NICE with full refreshment at each iteration
Input: Transformation Φ and momentum-flip involution s, acceptance function a, unnormalized
target density π, density ϕ of momentum p, initial point x0, number of steps N
for i = 0 to N − 1 do

Draw qi ∼ ϕ;
Compute proposal (yi+1, qi+1) = Φ(xi, qi);
Draw Bi ∼ Ber(ai) where

ai = a

(
Π(yi+1)ϕ(qi+1)

Π(xi)ϕ(qi)

)
;

if Bi ≡ 1 then
Set xi+1 = yi+1;

else
Set xi+1 = xi;

end if
end for
Return (x0:N)

In order to recover persistency, as discussed in Section 4.7.1, we consider the mixture of kernels T
(4.102); see Algorithm 2.

94 CHAPTER 4. NON-REVERSIBLE MCMC

Algorithm 2 NICE with randomized full refreshment
Input: Transformation Φ and momentum-flip involution s, acceptance function a, unnormalized
target π, density ϕ of momentum p, probability of refreshment ω, initial point x0 and initial momentum
p0, number of steps N ;
for i = 0 to N − 1 do

Draw Ri ∼ Ber(ω);
if Ri ≡ 0 then

Compute proposal (yi+1, qi+1) = Φ(xi, pi); ### No refreshment, deterministic dynamics
Draw Bi ∼ Ber(ai) where

ai = a

(
Π(yi+1)ϕ(qi+1)

Π(xi)ϕ(qi)

)
;

if Bi ≡ 1 then
Set (xi+1, pi+1) = (yi+1, qi+1); ### accept the move and keep the momentum

else
Set (xi+1, pi+1) = s(xi, pi); ### reject the move and flip the momentum

end if
else

Sample qi ∼ ϕ; ### Full refreshment of the momentum to update the position
Compute proposal (yi+1, qi+1) = Φ(xi, qi);
Draw Bi ∼ Ber(ai) where

ai = a

(
Π(yi+1)ϕ(qi+1)

Π(xi)ϕ(qi)

)
;

Draw pi+1 ∼ ϕ;
if Bi ≡ 1 then

Set xi+1 = yi+1;
else

Set xi+1 = xi;
end if

end if
end for
Return (x0:N)

4.7.2 Proof of (4.28)

By (4.150), we get

q
(
(x, v), (y, w)

)
= {ρ1v(w) + (1− ρ)1−v(w)}qw(x, y) , (4.145)

q
(
s(y, w), s(x, v)

)
= q
(
(y,−w), (x,−v)

)
(4.146)

= {ρ1−w(−v) + (1− ρ)1w(−v)}q−w(y, x) (4.147)
= {ρ1v(w) + (1− ρ)1−v(w)}q−w(y, x) , (4.148)

which implies that

q
(
s(y, w), s(x, v)

)
q
(
(x, v), (y, w)

) =
q−w(y, x)

qw(x, y)
. (4.149)

The proof follows from (4.11).

4.7. PROOFS 95

Algorithm 3 NICE with persistence
Input: Transformation Φ and momentum-flip involution s, acceptance function a, unnormalized
target π, density ϕ of momentum p, hyperparameter β, initial point x0 and initial momentum p0,
number of steps N
for i = 0 to N − 1 do

Draw ui ∼ ϕ and set qi = βpi +
√

1− β2ui;
Compute proposal (yi+1, qi+1) = Φ(xi, qi);
Draw Bi ∼ Ber(ai) where

ai = a

(
Π(yi+1)ϕ(qi+1)

Π(xi)ϕ(qi)

)
;

if Bi ≡ 1 then
Set (xi+1, pi+1) = (yi+1, qi+1); ### accept the move and keep the momentum

else
Set (xi+1, pi+1) = s(xi, qi); ###reject the move and flip the momentum

end if
end for
Return (x0:N)

4.7.3 Implementation details of Example 9

We define here a probability of refresh ω. At each iteration, we refresh the direction with probability ω,
in which case we draw v ∼ U{−1, 1}. With this definition, we can reinterpret the parameter ρ (4.150)

q
(
(x, v), (y, w)

)
=
{
ρ1v(w) + (1− ρ)1−v(w)

}
qw(x, y) , (4.150)

as ω = 2ρ. In particular, we can write the lifted algorithm with randomized direction refresh in
Algorithm 4.

4.7.4 Proof of Lemma 10

From (4.28) and (4.29), we get

α
(
(x, v), (y, w)

)
= a

(
q−w(y, x)Π(y)

qw(x, y)Π(x)

)
(4.151)

= a

Π(y)ϕ
(
G̃−1
−w,y(x)

)
JG̃−1
−w,y

(x)

Π(x)ϕ
(
G̃−1
w,x(y)

)
JG̃−1

w,x
(y)

 = a

µ(y, G̃−1
−w,y(x)

)
JG̃−1
−w,y

(x)

µ
(
x, G̃−1

w,x(y)
)
JG̃−1

w,x
(y)

 . (4.152)

Set H̃w,x(p) = proj2 ◦Ψw(x, p). Note that

Ψw(x, p) =
(
G̃w,x(p), H̃w,x(p)

)
.

Hence, we obtain

Ψ−w
(
y, G̃−1

−w,y(x)
)

=
(
G̃−w,y ◦ G̃−1

−w,y(x), H̃−w,y ◦ G̃−1
−w,y(x)

)
=
(
x, H̃−w,y ◦ G̃−1

−w,y(x)
)
,

which implies, (
y, G̃−1

−w,y(x)
)

= Ψw
(
x, H̃−w,y ◦ G̃−1

−w,y(x)
)
, (4.153)

=
(
G̃w,x ◦ H̃−w,y ◦ G̃−1

−w,y(x), H̃w,x ◦ H̃−w,y ◦ G̃−1
−w,y(x)

)
. (4.154)

This identity in particular shows that y = G̃w,x ◦ H̃−w,y ◦ G̃−1
−w,y(x) or equivalently G̃−1

w,x(y) = H̃−w,y ◦
G̃−1
−w,y(x), which used in (4.153) establishes(

y, G̃−1
−w,y(x)

)
= Ψw

(
x, G̃−1

w,x(y)
)
. (4.155)

96 CHAPTER 4. NON-REVERSIBLE MCMC

Algorithm 4 Lifted Markov sampling
Input: Transformations G1,x, G−1,x, acceptance function a, unnormalized target π, density ϕ of
momentum p, initial point x0 and initial direction v0, probability of refreshment ω, number of steps
N
for i = 0 to N − 1 do

Draw Ri ∼ Ber(ω);
if Ri ≡ 1 then

Refresh direction wi ∼ U{−1, 1};
else

Keep direction wi = vi;
end if
Draw qi ∼ ϕ;
Compute proposal yi+1 = Gwi,xi(qi);
Draw Bi ∼ Ber(ai) where

ai = a

Π(yi+1)ϕ
(
G−1
−wi,yi+1

(xi)
)
JG−1
−wi,yi+1

(xi)

Π(xi)ϕ
(
G−1
wi,xi(yi+1)

)
JG−1

wi,xi
(yi+1)

 ;

if Bi ≡ 1 then
Set (xi+1, vi+1) = (yi+1, wi); ### accept the move and keep the direction

else
Set (xi+1, vi+1) = (xi,−wi); ###reject the move and flip the direction

end if
end for
Return (x0:N)

Set Aw(x, y) =
(
y, G̃−1

−w,y(x)
)
and Bw(x, y) =

(
x, G̃−1

w,x(y)
)
. Note that JAw(x, y) = JG̃−1

−w,y
(x),

JBw(x, y) = JG̃−1
w,x

(y) and by (4.155) and the chain rule

JAw(x, y) = JΨw
(
Bw(x, y)

)
JBw(x, y) ,

which implies

JΨw
(
x, G̃−1

w,x(y)
)

=
JG̃−1
−w,y

(x)

JG̃−1
w,x

(y)
. (4.156)

The proof of Lemma 10 is concluded by plugging (4.155) and (4.156) into (4.152).

4.7.5 Lifted acceptance probability with deterministic proposals

In this case Φ(x, p, v) = (Ψv(x, p), v), (x, p) ∈ R2d, s ∈ V. Clearly, Φ−1(x, p, v) = (Ψ−v(x, p), v) and it
is easily checked that Φ−1 = s ◦ Φ ◦ s. Denote

π
(
d(x, p, v)

)
= π0(x)ϕ(p)dxdpρ(dv) = µ(x, p)dxdpρ(dv) . (4.157)

To compute the acceptance probability (4.14), we need to evaluate the density k(z) = dµ/dλ(z), where

λ = π + Φ−1
π. (4.158)

Let f : Rd × Rd × V→ R+ be a measurable function. We get

λ(f) =

∫
f(x, p, v)µ(x, p)dxdpρ(dv) +

∫
f(Ψ−v(x, p), v)µ(x, p)dxdpρ(dv) (4.159)

=

∫
f(x, p, v)µ(x, p)dxdpρ(dv) +

∫
f(x′, p′, v)µ

(
Ψv(x′, p′)

)
JΨv(x

′, p′)dx′dp′ρ(dv) . (4.160)

4.7. PROOFS 97

Therefore, we get
dλ

dLeb2d ⊗ ρ
(x, p, v) = µ(x, p) + µ

(
Ψv(x, p)

)
JΨv(x, p) . (4.161)

This implies that, for all (x, v) ∈ Rd × V,

k(x, p, v) =
µ(x, p)

µ(x, p) + µ
(
Ψv(x, p)

)
JΨv(x, p)

. (4.162)

Since s ◦ Φ(x, p, v) = (Ψv(x, p),−v), we obtain

k
(
s ◦ Φ(x, p, v)

)
=

µ
(
Ψv(x, p)

)
µ
(
Ψv(x, p)

)
+ µ(x, p)JΨ−v

(
Ψv(x, p)

) (4.163)

=
µ
(
Ψv(x, p)

)
JΨv(x, p)

µ(x, p) + µ
(
Ψv(x, p)

)
JΨv(x, p)

, (4.164)

where we have used JΨv(x, p) = 1/JΨ−v
(
Ψv(x, p)

)
. Therefore, the acceptance probability is given by

α
(
(x, v), (y, w)

)
=

a

(
µ
(

Ψv(x,p)
)

JΨv (x,p)

µ(x,p)

)
, if µ(x, p) > 0, (y, w) = (Ψv(x, p), v),

1, if µ(x, p) = 0 or (y, w) 6= (Ψv(x, p), v) .

(4.165)

4.7.6 L2HMC Algorithms

In this section, we discuss the sampling algorithms associated to the L2HMC kernel, Example 11.
Again, we first describe a version of this algorithm in which the momentum is fully refreshed at each
iteration. This is a lifted version of the original L2HMC algorithm [LHS17a], because we keep the
direction variable at each iteration instead of refreshing the direction at each iteration. Consider the
following assumption.

L2HMC1. For all v, x ∈ {−1,+1} × Rd,

Gv,x : p 7→ proj1 ◦Ψv(x, p) (4.166)

is a C1-diffeomorphism.

As in the NICE case, establishing L2HMC1 requires conditions on the mapping Ψ defining the
L2MHC transitions, which is subject to a future work. Under L2HMC1, Lemma 10 shows that the
lifted L2HMC with full momentum refresh satisfies the assumption of Proposition 8. We may therefore
apply Theorem 6 to show convergence of the algorithm in the sense of Theorem 1.

As said above, the original L2HMC algorithm (Algorithm 5) refreshes at each iteration both the
direction and the momentum, whereas the lifted algorithm keeps the direction and refreshes only the
momentum. Similar to the NICE case, define the marginal kernel, acting on the position only:

K(x, dy) = Kα(x,dy) +
(
1− ᾱ(x)

)
δx(dy) ,

where ᾱ(x) = Kα(x,Rd) and for a measurable nonnegative function f ,

Kαf(x) =

∫∫
f
(
proj1 ◦Ψv(x, p)

)
ᾱ(x, p, v)Q

(
(x, p, v), d(y, q, w)

)
ϕ(p)dpρ(dv) ,

where
Q
(
(x, p, v),d(y, q, w)

)
= δΨv(x,p)

(
d(y, q)

)
δv(dw) . (4.167)

and
ᾱ(x, p, v) = a

(
µ
(
Ψv(x, p)

)
/µ(x, p) JΨv(x, p)

)
, (4.168)

98 CHAPTER 4. NON-REVERSIBLE MCMC

Algorithm 5 Original L2HMC
Input: Transformation Ψ, acceptance function a, unnormalized target π, density ϕ of momentum p,
initial point x0, number of steps N
for i = 0 to N − 1 do

Refresh momentum qi ∼ ϕ and direction vi ∼ U{−1, 1};
Compute proposal (yi+1, qi+1) = Ψvi(xi, qi);
Draw Bi ∼ Ber(ai) where

ai = a

(
π(yi+1)ϕ(qi+1)

π(xi)ϕ(qi)
JΨvi (xi, qi)

)
;

if Bi ≡ 1 then
Set xi+1 = yi+1;

else
Set xi+1 = xi;

end if
end for
Return (x0:N)

Algorithm 6 Lifted L2HMC with full momentum refreshment
Input: Transformation Ψ, acceptance function a, unnormalized target π, density ϕ of momentum p,
probability of direction refreshment ω, initial point x0 and initial direction v0, number of steps N
for i = 0 to N − 1 do

Draw Ri ∼ Ber(ω);
if Ri ≡ 1 then

Refresh direction wi ∼ U{−1, 1};
else

Keep direction wi = vi;
end if
Refresh momentum qi ∼ ϕ;
Compute proposal (yi+1, qi+1) = Ψwi(xi, qi);
Draw Bi ∼ Ber(ai) where

ai = a

(
π(yi+1)ϕ(qi+1)

π(xi)ϕ(qi)
JΨwi (xi, qi)

)
;

if Bi ≡ 1 then
Set (xi+1, vi+1) = (yi+1, wi); ### accept the move and keep the direction

else
Set (xi+1, vi+1) = (xi,−wi); ###reject the move and flip the direction

end if
end for
Return (x0:N)

Recall that the Markov kernelQα
(
x, p, v; d(y, q, w)

)
= ᾱ(x, p, v)Q

(
(x, p, v), d(y, q, w)

)
is (π, S)-reversible.

Let f and g be two positive measurable functions on Rd. Since Qα is (π, S)-reversible and ρ is symmetric,

4.7. PROOFS 99

we get∫
Π(dx)Kαf(x)g(x) =

∫
π
(
d(x, p, v)

)
Qα
(
(x, p, v); d(y, q, w)

)
f(y)g(x) (4.169)

=

∫
π
(
d(y, q, w)

)
SQαSg(y)f(y) (4.170)

=(3)

∫
π
(
d(y, q, w)

)
ᾱ(y, q,−w)Q

(
(y, q,−w); d(x, p, v)

)
g(x)f(y) (4.171)

=(4)

∫
π
(
d(y, q, w)

)
ᾱ(y, q, w)Q

(
(y, q, w); d(x, p, v)

)
g(x)f(y) (4.172)

=(5)

∫
Π(dx)Kαg(y)f(y) (4.173)

where we have used in (3) that SQαSg(y, q, w) = ᾱ(y, q,−w)
∫
Q
(
(y, q,−w); d(x, p, v)

)
g(x), in (4)

the symmetry of ρ and finally in (5) the definition of Kα. Hence the L2HMC kernel is Π-reversible.
Moreover, note that under L2HMC1, we obtain

Kαf(x) =

∫ {∫
ᾱ(x,G−1

v,x(y), v)ϕ
(
G−1
v,x(y)

)
JG−1

v,x
(y)ρ(dv)

}
f(y)dy . (4.174)

Denoting by qv(x, y) the transition density qv(x, y) = ϕ
(
G−1
v,x(y)

)
JG−1

v,x
(y) and then setting q(x, y) =∫

qv(x, y)ρ(dv), we finally get

Kαf(x) =

∫
α(x, y)q(x, y)f(y)dy (4.175)

with

α(x, y) =

∫
ᾱ(x,G−1

v,x(y), v)ϕ
(
G−1
v,x(y)

)
JG−1

v,x
(y)ρ(dv)∫

ϕ
(
G−1
v,x(y)

)
JG−1

v,x
(y)ρ(dv)

(4.176)

Write now, following [Tie94],

r(x, y) =
Π(x)q(x, y)

Π(y)q(y, x)
. (4.177)

Moreover, by Lemma 10, we can write

ᾱ(x,G−1
v,x(y), v) = a

(
Π(y)q−v(y, x)

Π(x)qv(x, y)

)
. (4.178)

In that case, we have

α(x, y)Π(x)q(x, y) =

∫
Π(x)qv(x, y)a

(
Π(y)q−v(y, x)

Π(x)qv(x, y)

)
ρ(dv) (4.179)

=

∫
Π(y)q−v(y, x)a

(
Π(x)qv(x, y)

Π(y)q−v(y, x)

)
ρ(dv) (4.180)

=

∫
Π(y)qw(y, x)a

(
Π(x)q−w(x, y)

Π(y)qw(y, x)

)
ρ(dw) , (4.181)

where we have use the fact that ta(1/t) = a(t) and the change of variable w = −v. Then,

α(x, y)Π(x)q(x, y) = α(y, x)Π(y)q(y, x) . (4.182)

We thus have α(x, y)r(x, y) = α(y, x), which proves by [Tie94], Theorem 2, that the ratio α is exactly
the classical MH ratio satisfying the detailed balance condition.

To retrieve persistency, we can use as for the NICE algorithm a mixture of a deterministic L2HMC
move and a full independent refreshment of the position, momentum and the direction; see Algorithm 7.

100 CHAPTER 4. NON-REVERSIBLE MCMC

Algorithm 7 Lifted L2HMC with randomized full refreshment
Input: Transformation Ψ, acceptance function a, unnormalized target π, density ϕ of momentum p,
probability of refreshment ω, initial point x0, initial momentum p0 and initial direction v0, number
of steps N
for i = 0 to N − 1 do

Draw Ri ∼ Ber(ω);
if Ri ≡ 0 then

Compute proposal (yi+1, qi+1) = Ψvi(xi, pi); ###No refreshment, deterministic dynamics
Draw Bi ∼ Ber(ai) where

ai = a

(
π(yi+1)ϕ(qi+1)

π(xi)ϕ(pi)
JΨvi (xi, pi)

)
;

if Bi ≡ 1 then
Set (xi+1, pi+1, vi+1) = (yi+1, qi+1, vi); ### accept the move and keep the direction

else
Set (xi+1, pi+1, vi+1) = (xi, pi,−vi); ###reject the move and flip the direction

end if
else

Draw qi ∼ ϕ, wi ∼ U{−1, 1}; ### refresh independently the momentum and the direction
Compute proposal (yi+1, qi+1) = Ψwi(xi, qi);
Draw Bi ∼ Ber(ai) where

ai = a

(
π(yi+1)ϕ(qi+1)

π(xi)ϕ(qi)
JΨwi (xi, qi)

)
;

Draw pi+1 ∼ ϕ, vi+1 ∼ U{−1, 1}; ### refresh the momentum and the direction
if Bi ≡ 1 then

Set xi+1 = yi+1;
else

Set xi+1 = xi;
end if

end if
end for
Return (x0:N)

Much like the persistent HMC algorithm, we may also design a lifted persistent HMC algorithm
in which, at each iteration, we keep the direction and partially refresh the momentum using an
autoregressive scheme; see Algorithm 8.

4.8. EXPERIMENTS 101

Algorithm 8 Lifted L2HMC with persistence
Input: Transformation Ψ, acceptance function a, unnormalized target π, density ϕ of momentum p,
hyperparameter β, initial point x0, initial momentum p0 and initial direction v0, number of steps N
for i = 0 to N − 1 do

Sample ui ∼ ϕ and refresh momentum qi = βpi +
√

1− β2ui; ### partially update the
momentum
Compute proposal (yi+1, qi+1) = Ψvi(xi, qi);
Draw Bi ∼ Ber(ai) where

ai = a

(
π(yi+1)ϕ(qi+1)

π(xi)ϕ(qi)
JΨvi (xi, qi)

)
;

if Bi ≡ 1 then
Set (xi+1, pi+1, vi+1) = (yi+1, qi+1, vi); ### accept the move and keep the direction

else
Set (xi+1, pi+1, vi+1) = (xi, pi,−vi); ### reject the move and flip the direction

end if
end for
Return (x0:N)

4.8 Experiments

In this section, we aim to compare the developed irreversible algorithms with their reversible counterparts.
We mainly focus on the proposal mappings based on the Normalizing Flows [Pap+19] but also consider
more classical MH algorithms such as MALA.

The proposal mappings based on the Normalizing flows are heavily parametrized and these parameters
need to be chosen. In this work, we follow [LHS17a] and choose the parameter values, that optimize
the Expected Squared Jump distance with the reciprocal term. Importantly, in all the experiments
below we report the results for already learned proposals, i.e. the sampling is done after the learning
with all the parameters being fixed. Moreover, our goal is not to introduce a criterion for choosing
the parameters of the transitions, but merely to introduce a general framework in which irreversible
and normalizing flow based MCMC can be understood as part of a general recipe, with convergence
guarantees.

We mainly focus on two algorithms: NICE and L2HMC. For both algorithms we consider the
original reversible versions (see Algorithms 1 and 5), the versions with randomized full refreshment (see
Algorithms 2 and 7) and, finally, their persistent counterparts (see Algorithms 3 and 8). We apply these
methods on mixtures of Gaussians (MoG) in dimension 10 with different variances. The modes of the
distribution differ only by the first coordinate, respectively −2 and 2 for the first and the second mode.
We also consider a Strongly Correlated Gaussian in dimension 2, introduced in [LHS17a]. Additionally,
we compare classical MALA transitions with a conditional Invertible Transforms transition introduced
in Section 4.3, see also Algorithm 4.

We report several metrics to show the effectiveness of the (π, S)-reversibility in practice, and
demonstrate the importance of the convergence conditions we derive. First, we report Effective Sample
Size (ESS). We also display a convergence metric to assess the quality of the different samplers
considered. We compute the log-likelihood of the samples produced, and additionally train a Kernel
Density Estimator (KDE – here a Gaussian kernel with a bandwidth of 0.1) on the samples received.
We can thus compute backward Kullback-Leibler divergence obtained between π the target distribution
and q the estimated density by the KDE, KL(q‖π). We see in general the advantage of persistency
features compared to fully reversible algorithms, at no expense in computational cost.

First, we display in Figure 4.1 a visualization of samples from L2HMC, a cIT-MALA lifted kernel

102 CHAPTER 4. NON-REVERSIBLE MCMC

Figure 4.1: From left to right: L2HMC, Lifted irreversible kernel with cIT and MALA transitions,
MALA algorithm. L2HMC performs high jump with less cover of the modes, while lifted kernels with
cIT and MALA transitions cover effectively the mixture. A classical MALA algorithm struggles to mix.

Table 4.1: Mixture of Gaussians with diagonal covariances 0.1 and 0.25 in dimension 10
Proposal ESS KL LogLikelihood
NICE 0.0538819 311.132 -14.7606
NICE with randomized full refreshment 0.449657 195.963 -7.19236
NICE with persistence 0.149203 280.394 -12.0524

and MALA. We express in this figure the benefits of the convergence results of Theorem 1, and the
effectiveness of neural enhanced samplers.

Moreover, the results of the experiments for NICE and L2HMC algorithms are summarized in
Tables 4.1, 4.2 and 4.3. Without increasing the number of parameters and the expressiveness of the
sampler, persistency through partial refreshment or randomized full refreshment comes with an increase
in the competitiveness of the sampler, which can be spectacular; see Tables 4.1 and 4.2. Note that
NICE-based samplers struggle on the Strongly Correlated Gaussian challenge, which was one of the
main improvement of the L2HMC sampler. Finally, we show in Figures 4.2 and 4.3, the autocorrelation
plots of the different samplers on the problems considered, as a visual representation of the tables.

Table 4.2: Mixture of Gaussians with diagonal covariances 0.3 and 0.3 in dimension 10
Proposal ESS KL LogLikelihood
NICE 0.061500 345.224242 -23.166510
NICE with randomized full refreshment 0.139867 34.312647 -10.130489
NICE with persistence 0.141844 312.134878 -19.516108

4.8. EXPERIMENTS 103

Table 4.3: Strongly Correlated Gaussian in dimension 2
Proposal ESS KL LogLikelihood
NICE 0.003849 20.548244 -4.03679
NICE with randomized full refreshment 0.003768 585.054601 -4.80058
NICE with persistence 0.004165 17.614930 -4.19062
Original L2HMC 0.199865 0.575168 -3.98623
L2HMC with randomized full refreshment 0.015753 1146.000895 -20.5811
L2HMC with persistence 0.235942 101.317806 -7.28438

Figure 4.2: From left to right: Autocorrelation plot for different implementations of NICE, for a Mixture
of Gaussian with diagonal variances of respectively 0.1 and 0.25, and 0.3 and 0.3

Figure 4.3: From left to right: Autocorrelation plots for different implementations of NICE and L2HMC
algorithms on a Strongly Correlated Gaussian.

104 CHAPTER 4. NON-REVERSIBLE MCMC

Chapter 5

NEO: Non Equilibrium Sampling on the
Orbit of a Deterministic Transform

Achille Thin1, Yazid Janati2, Sylvain Le Corff2, Charles Ollion1, Arnaud
Doucet3, Alain Durmus4, Eric Moulines1, Christian Robert5

Abstract

Sampling from a complex distribution π and approximating its intractable normalizing constant Z are
challenging problems. In this paper, a novel family of importance samplers (IS) and Markov chain
Monte Carlo (MCMC) samplers is derived. Given an invertible map T, these schemes combine (with
weights) elements from the forward and backward Orbits through points sampled from a proposal
distribution ρ. The map T does not leave the target π invariant, hence the name NEO, standing
for Non-Equilibrium Orbits. NEO-IS provides unbiased estimators of the normalizing constant and
self-normalized IS estimators of expectations under π while NEO-MCMC combines multiple NEO-IS
estimates of the normalizing constant and an iterated sampling-importance resampling mechanism to
sample from π. For T chosen as a discrete-time integrator of a conformal Hamiltonian system, NEO-IS
achieves state-of-the art performance on difficult benchmarks and NEO-MCMC is able to explore
highly multimodal targets. Additionally, we provide detailed theoretical results for both methods. In
particular, we show that NEO-MCMC is uniformly geometrically ergodic and establish explicit mixing
time estimates under mild conditions.

5.1 Introduction

Consider a target distribution of the form π(x) ∝ Λ(x)L(x) where Λ is a probability density function
(pdf) on Rd and L is a nonnegative function. Typically, in a Bayesian setting, π is a posterior distribution
associated with a prior distribution ρ and a likelihood function L. Another situation of interest is
generative modeling where π is the distribution implicitly defined by a Generative Adversarial Networks
(GAN) discriminator-generator pair where ρ is the distribution of the generator and L is derived from the
discriminator [Tur+19a; Che+20b]. In a Variational Auto Encoder (VAE) context [KW14; BGS15], π
could be the true posterior distribution, ρ the approximate posterior distribution output by the encoder
and L an importance weight between the true posterior and approximate posterior distributions. We
are interested in this paper in sampling from π and approximating its intractable normalizing constant

1Centre de Mathématiques Appliquées, UMR 7641, Ecole polytechnique, France
2Samovar, Télécom SudParis, département CITI, TIPIC, Institut Polytechnique de Paris, Palaiseau
3Department of Statistics, University of Oxford
4Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France
5Ceremade, Université Paris-Dauphine & Department of Statistics, University of Warwick

105

106 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

Z =
∫
ρ(x)L(x)dx. These problems arise in many applications in statistics, molecular dynamics or

machine learning, and remain challenging.
Many approaches to compute normalizing constants are based on Importance Sampling (IS) - see

[Aga+17; AM21] and the references therein - and its variations, among others, Annealed Importance
Sampling (AIS) [Nea01a; Wu+16; DF19] and Sequential Monte Carlo (SMC) [DDJ06a]. More recently,
Neural IS has also become very popular in machine learning; see e.g. [EM12; Mül+19; Pap+19; Pra19a;
Wir+20; WKN20a]. Neural IS is an adaptive IS which relies on an importance function obtained by
applying a normalizing flow to a reference distribution. The parameters of this normalizing flow are
chosen by minimizing a divergence between the proposal and the target (such as the Kullback–Leibler
[Mül+19] or the χ2-divergence [Aga+17]). Recent work on the subject proposes to add stochastic moves
in order to enhance the performance of the normalizing flows [WKN20a].

More recently, the Non-Equilibrium IS (NEIS) method has been introduced by [RV19] as an
alternative to these approaches. Similar to Neural IS, NEIS consists in transporting samples {Xi}Ni=1

from a reference distribution using a family of deterministic mappings. For NEIS, this family is chosen
to be an homogeneous differential flow (φt)t∈R. In contrast to Neural IS, for any i ∈ [N], the sample
Xi is propagated both forward and backward in time along the orbits associated with (φt)t∈R until
stopping conditions are met. Moreover, the resulting estimator of the normalizing constant is obtained
by computing weighted averages of the whole orbit (φt(X

i))t∈[τ+,i,τ−,i], where τ+,i, τ−,i are the resulting
stopping times, and not only the endpoints φτ+,i(Xi), φτ−,i(X

i). In [RV19], the authors provide an
application of NEIS with (φt)t∈R associated with a conformal Hamiltonian dynamics, and reports
impressive numerical results on difficult normalizing constants estimation problems, in particular for
high-dimensional multimodal distributions.

We propose in this work NEO-IS which alleviates the shortcomings of NEIS. Similar to NEIS,
samples are drawn from a reference distribution, typically set to ρ, and are propagated under the forward
and backward orbits of a discrete-time dynamical system associated with an invertible transform T.
An estimator of the normalizing constant is obtained by reweighting all the points on the whole orbits
using the IS rule. Contrary to NEIS, the NEO-IS estimator of Z is unbiased under assumptions that
are mild and easy to verify. It is more flexible than NEIS because it does not rely on the accuracy of
the discretization of a continuous-time dynamical system.

We then show how it is possible to leverage the unbiased estimator of Z defined by NEO-IS to
obtain NEO-MCMC, a novel massively parallel MCMC algorithm to sample from π. In a nutshell,
NEO-MCMC relies on parallel walkers which each estimates the normalizing constant but are allowed
to interact through a resampling mechanism.

Our contributions can be summarized as follows.

(i) We present a novel class of IS estimators of the normalizing constant Z referred to as NEO-IS. More
broadly, a small modification of this algorithm also allows us to estimate integrals with respect to
π. Both finite sample and asymptotic guarantees are provided for these two methodologies.

(ii) We develop a new massively parallel MCMC method, NEO-MCMC. NEO-MCMC combines NEO-
IS unbiased estimator of the normalizing constant with iterated sampling-importance resampling
methods. We prove that it is π-reversible and ergodic under very general conditions. We derive
also conditions which imply that NEO-MCMC is uniformly geometrically ergodic (with an explicit
expression of the convergence rate).

(iii) We illustrate our findings using numerical benchmarks which show that both NEO-IS and
NEO-MCMC outperform state-of-the-art (SOTA) methods in difficult settings.

5.2 NEO-IS algorithm

In this section, we derive the NEO-IS algorithm. The two key ingredients for this algorithm are (1) the
reference distribution ρ and (2) a transformation T assumed to be a C1-diffeomorphism with inverse T−1.

5.2. NEO-IS ALGORITHM 107

Write, for k ∈ N∗ = N\{0}, Tk = T ◦Tk−1, T0 = Idd and similarly T−k = T−1 ◦T−(k−1). For any k ∈ Z,
denote by ρk : Rd → R+ the pushforward of ρ by Tk, defined for x ∈ Rd by ρk(x) = ρ(T−k(x))JT−k(x),
where JΦ(x) ∈ R+ is the absolute value of the Jacobian determinant of Φ : Rd → Rd evaluated at x. In
line with multiple importance sampling à la Owen and Zhou [OZ00a], we introduce the proposal density

ρT(x) = Ω−1
∑

k∈Z
$kρk(x) , (5.1)

where {$k}k∈Z is a nonnegative sequence and Ω =
∑

k∈Z$k. Note that we assume in the sequel that
the support of the weight sequence defined as {k ∈ Z : $k 6= 0} is finite. Thus, the mixture distribution
in (5.1) is a finite mixture. Given x ∈ Rd, ρT(x) is a function of the forward and backward orbit of
T through x.

For any nonnegative function f , the definition of ρT implies that∫
f(y)ρT(y)dy = Ω−1

∫ ∑
k∈Z

$kf(Tk(x))ρ(x)dx .

Assuming that $0 > 0, the ratio ρ(x)/ρT(x) 6 $−1
0 Ω <∞ is bounded. We can therefore apply the IS

principle which allows to write the identity∫
f(x)ρ(x)dx =

∫ (
f(y)

ρ(y)

ρT(y)

)
ρT(y)dy =

∫ ∑
k∈Z

f(Tk(x))wk(x)ρ(x)dx , (5.2)

where the weights are given by (see Section 5.7.2 for a detailed derivation),

wk(x) = $kρ(Tk(x))/{ΩρT(Tk(x))} = $kρ−k(x)
/∑

i∈Z
$k+iρi(x) . (5.3)

We assume in the sequel that $0 > 0. In particular, note that under this condition, the weights wk
are also upper bounded uniformly in x: for any x ∈ Rd, wk(x) 6 $k/$0. Equations (5.2) and (5.3)
suggest to estimate the integral

∫
f(x)ρ(x)dx by INEO

$,N (f) = N−1
∑N

i=1

∑
k∈Zwk(X

i)f(Tk(Xi)) where

{Xi}Ni=1 are i.i.d. samples from the proposal ρ, which is denoted by X1:N iid∼ ρ.

Algorithm 9 NEO-IS Sampler

1. Sample X1:N iid∼ ρ for i ∈ [N].

2. For i ∈ [N], compute the path (Tj(Xi))j∈Z and weights (wj(X
i))j∈Z.

3. INEO
$,N (f) = N−1

∑N
i=1

∑
k∈Zwk(X

i)f(Tk(Xi)).

This estimator is obtained by a weighted combination of the elements of the independent forward
and backward orbits {Tk(Xi)}k∈Z with X1:N iid∼ ρ. This estimator is referred to as NEO-IS. Choosing
f ≡ L provides the NEO-IS estimator of the normalizing constant of π:

Ẑ$
Xi =

∑
k∈Z L(Tk(Xi))wk(X

i) , Ẑ$
X1:N = N−1

∑N
i=1 Ẑ$

Xi . (5.4)

We now study the performance of the NEO-IS estimator. The following two quantities play a fundamental
role in the analysis:

E$T = EX∼ρ
[(∑

k∈Zwk(X)L(Tk(X))/Z
)2]

,L = supx∈Rd
∑

k∈Zwk(x)L(Tk(x))/Z . (5.5)

Theorem 29. Ẑ$
X1:N is an unbiased estimator of Z. If E$T <∞, then, E[|Ẑ$

X1:N /Z−1|2] = N−1(E$T −1).

If L <∞, then, for any δ ∈ (0, 1), with probability 1− δ,
√
N
∣∣∣Ẑ$X1:N /Z− 1

∣∣∣ 6 L
√

log(2/δ)/2.

108 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

The (elementary) proof is postponed to Section 5.7.3. E$T plays the role of the second-order
moment of the importance weights EX∼ρ[L2(X)] which is key to the performance of IS algorithms
[Aga+17; AM21]. In addition, since the NEO-IS estimator Ẑ$

X1:N is unbiased, the Cauchy–Schwarz
inequality implies that EX∼ρ

[(∑
k∈Zwk(X)L(Tk(X)))2

]
> Z2 and hence that E$T > 1. Note that

if ‖L‖∞ = supx∈Rd L(x) < ∞, then since the weights are uniformly bounded by Ω$−1
0 , we have

M$
T 6 ‖L‖∞Ω$−1

0 /Z.
Using the NEO-IS estimate Ẑ$

X1:N of the normalizing constant, we can construct a self-normalized
IS estimate of

∫
f(x)π(x)dx:

JNEO
$,N (f) = N−1

N∑
i=1

Ẑ$
Xi

Ẑ$
X1:N

∑
k∈Z

L(Tk(Xi))wk(X
i)

Ẑ$
Xi

f(Tk(Xi)) , (5.6)

referred to as NEO-SNIS estimator. This expression may seem unnecessarily complicated but highlights
the hierarchical structure of the estimator. We combine estimators (Ẑ$

Xi)
−1
∑

k∈Z L(Tk(Xi))wk(Xi)f(Tk(Xi))
evaluated on the forward and backward orbits through the points {Xi}Ni=1 using the normalized weights
{Ẑ$

Xi/Ẑ
$
X1:N }Ni=1. Although the NEO-IS estimator is unbiased, the NEO-SNIS is in general biased.

However, for bounded functions, both the bias and the variance of the NEO-SNIS estimator are O(N−1),
with constants proportional to E$T . For g a π-integrable function, we set π(g) =

∫
g(x)π(x)dx.

Theorem 30. Assume that E$T <∞. Then, for any function g satisfying supx∈Rd |g(x)| 6 1 on Rd,
and N ∈ N

E
X1:N iid∼ρ

[
|JNEO
$,N (g)− π(g)|2

]
6 4 ·N−1E$T , (5.7)∣∣∣E

X1:N iid∼ρ

[
JNEO
$,N (g)− π(g)

]∣∣∣ 6 2 ·N−1E$T . (5.8)

If L <∞, then for δ ∈ (0, 1], with probability at least 1− δ,
√
N |JNEO

$,N (g)− π(g)| 6 ‖g‖∞L
√

32 log(4/δ) . (5.9)

The proof is postponed to Section 5.7.4. These results extend to NEO-SNIS estimators the results
known for self-normalized IS estimators; see e.g., [Aga+17; AM21] and the references therein. The
upper bounds stated in this result suggest it is good practice to keep E$T /N small in order to obtain
sensible approximations. For two pdfs p and q on Rd, denote by Dχ2(p, q) =

∫
{p(x)/q(x)− 1}2q(x)dx

the χ2-divergence between p and q.

Lemma 31. For any nonnegative sequence ($k)k∈Z, we have E$T 6 Dχ2(π‖ρT) + 1.

The proof is postponed to Section 5.7.5. Lemma 31 suggests that accurate sampling requires N to
scale linearly with the χ2-divergence between the target π and the extended proposal ρT.

Remark 32. We can extend NEO to non homogeneous flows, replacing the family {Tk : k ∈ Z} with
a collection of mappings {Tk : k ∈ Z}. This would allow us to consider further flexible classes of
transformations such as normalizing flows; see e.g. [Pap+19]. The χ2-divergence Dχ2(π‖ρT) provides a
natural criterion for learning the transformation. We leave this extension to future work.

Conformal Hamiltonian transform The efficiency of NEO relies heavily on the choice of T.
Intuitively, a sensible choice of T requires that (i) E$T is small, i.e. ρT should be close to π by Lemma 31
(see (5.5)), (ii) the inverse T−1 and the Jacobian of T are easy to compute. Following [RV19], we use for
T a discretization of a conformal Hamiltonian dynamics. Assume that U(·) = − log π(·) is continuously
differentiable. We consider the augmented distribution π̃(q, p) ∝ exp{−U(q)−K(p)} on R2d, where q
is the position, p is the momentum, and K(p) = pTM−1p/2 is the kinetic energy, with M a positive

5.3. NEO-MCMC ALGORITHM 109

definite mass matrix. By construction, the marginal distribution of the momentum under π̃ is the
target pdf π(q) =

∫
π̃(q, p)dp. The conformal Hamiltonian ODE associated with π̃ is defined by

dqt/dt = ∇pH(qt, pt) = M−1pt , (5.10)
dpt/dt = −∇qH(qt, pt)− γpt = −∇U(qt)− γpt ,

where H(q, p) = U(q) + K(p), and γ > 0 is a damping constant. Any solution (qt, pt)t>0 of (5.10)
satisfies setting Ht = H(qt, pt), dHt/dt = −γpTt M−1pt 6 0. Hence, all orbits converge to fixed points
that satisfy ∇U(q) = 0 and p = 0; see e.g. [Fra+20; Mad+18].

0 5 10 15 20 25
2.5

2.0

1.5

1.0

0.5

0.0 = 0.1
 = 1.0
 = 2.0

Figure 5.1: Left: E
1[K]

Th
(K)−1 vs EIS(K)−1 (red) in log10-scale as a function of the length of trajectories

K (the lower the better). Second left to right: Four examples of orbits with the same random seed for
different values of γ (from left to right, γ = 0.1, 1, 2).

In the applications below, we consider the conformal version of the symplectic Euler (SE) method
of (5.10), see [Fra+20]. This integrator can be constructed as a splitting of the two conformal and
conservative parts of the system (5.10). When composing a dissipative with a symplectic operator, we
set for all (q, p) ∈ R2d, Th(q, p) = (q + hM−1{e−hγp − h∇U(q)}, e−hγp − h∇U(q)), where h > 0 is a
discretization stepsize. This transformation can be connected with classical momentum optimization
schemes, see [Fra+20, Section 4]. By [Fra+20, Section 3], for any h > 0 Th is a C1-diffeomorphism on
R2d with Jacobian given by JTh(q, p) = e−γhd. In addition, its inverse is T−1

h (q, p) = (q−hM−1p, eγh{p+
h∇U(q − hM−1p)}). Therefore, the weight (5.3) of the NEO estimator is given by

wk(q, p) =
$kρ̃(Tk

h(q, p))e−γkhd∑
j∈Z$k+j ρ̃(T−jh (q, p))eγjhd

,

where ρ̃(q, p) ∝ ρ(q)e−K(p). Figure 5.1 displays for different values of γ on a log-scale the bound
E
1[0:K]

Th
− 1 appearing in Theorem 29 as a function of K, here we use the sequence of weights ($k)k∈Z =

(1[0:K](k))k∈Z (i.e. only the K+1 first elements of the forward orbits are used and are equally weighted).
For comparison, we also present on the same plot the bounds achieved by averaging K + 1 independent
IS estimates, EIS(K) − 1 = (K + 1)−1EX∼ρ[L(X)2]. Interestingly, Figure 5.1 shows that there is
a trade-off in the choice of γ which controls the exploration of the state space by the Hamiltonian
dynamics since the higher γ, the faster the orbits converge towards the modes. This fast convergence
prevents a “good” exploration of the space; e.g. E

1[0:K]

Th
is smaller for γ = 1.0 than for γ = 2.0 when

K > 7.

5.3 NEO-MCMC algorithm

We now derive an MCMC method to sample from π based on the NEO-IS estimator. A natural idea
consists in adapting the Sampling Importance Resampling procedure (SIR) (see for example [Rub87;
SBH03]) to the NEO framework.

110 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

Algorithm 10 NEO-MCMC Sampler
At step n ∈ N∗, given the conditioning orbit point Yn−1.
Step 1: Update the conditioning point

1. Set X1
n = Yn−1 and for any i ∈ {2, . . . , N}, sample Xi

n
iid∼ ρ.

2. Sample the orbit index In with probability proportional to (Ẑ$
Xi
n
)i∈[N], (5.4).

3. Set Yn = XIn
n .

Step 2: Output a sample

4. Sample index Kn with probability proportional to {wk(Yn)L(Tk(Yn))/Ẑ$Yn}k∈Z

5. Output Un = TKn(Yn).

The SIR method to sample JNEO
$,N (see (5.6)) consists of 4 steps.

(SIR-1) Draw independently X1:N iid∼ ρ and compute the associated forward and backward orbits
{Tk(Xi)}k∈Z of the point.
(SIR-2) Compute the normalizing constants associated with each orbit {Ẑ$

Xi}Ni=1.
(SIR-3) Sample an orbit index IN ∈ [N] with probability {Ẑ$

Xi/
∑N

j=1 Ẑ$
Xj}Ni=1.

(SIR-4) Draw the iteration indexKN on the IN -th orbit with probability {L(Tk(XIN))wk(XIN)/Ẑ$
XIN
}k∈Z.

The resulting draw is denoted by UN = TKN
(XIN). By construction, for any bounded func-

tion f , we get that E
[
f(UN)

∣∣X1:N , IN
]

= {Ẑ$
XIN
}−1

∑
k∈Zwk(XIN)L(Tk(XIN)) which implies

E
[
f(UN)

∣∣X1:N
]

= JNEO
$,N (f) (see (5.6)). Using Theorem 30, we therefore obtain |E[f(UN)] −∫

f(z)π(z)dz| 6 101/2‖f‖∞E$TN−1, showing that the law of the random variable µN = Law(UN)
converges in total variation to π as N →∞,

‖µN − π‖TV = sup
‖f‖∞61

|µN (f)− π(f)| 6 101/2E$TN
−1 . (5.11)

Based on [ADH10], we now derive the NEO-MCMC procedure, which in a nutshell consists in
iterating the SIR procedure while keeping a conditioning point (or equivalently, orbit); see Section 5.9.
The convergence of NEO-MCMC does not rely on letting N →∞: the NEO-MCMC works as soon as
N > 2, although as we will see below the mixing time decreases as N increases.

This procedure is summarized in Algorithm 10. The NEO-MCMC procedure is an iterated algorithm
which produces a sequence {(Yn, Un)}n∈N of points in Rd. The n-th iteration of the NEO-MCMC
algorithm consists in two main steps: 1) updating the conditioning point Yn−1 → Yn 2) sampling Un
by selecting a point in the orbit {Tk(Yn)}k∈Z of the conditioning point. Compared to SIR, only the
generation of the points (step (SIR-1)) is modified: we set X1

n = Yn−1 (the conditioning point), and
then draw X2:N

n
iid∼ ρ.

The sequence {Yn}n∈N defined by Algorithm 10 is a Markov chain: P (Yn ∈ A |Y0:n−1) = P (Yn ∈ A |Yn−1) =
P (Yn,A) where

P (y,A) =

∫
δy(dx

1)
N∏
j=2

ρ(xj)dxj
N∑
i=1

Ẑ$
xi∑N

j=1 Ẑ$
xj

1A(xi) , y ∈ Rd ,A ∈ B(Rd) . (5.12)

Note that this Markov kernel describes the way, at stage n + 1, the conditioning point Yn+1 is
selected given Yn, which depends only on the estimator of the normalizing constants associated
with each orbit, but not on the sample Un selected on the conditioning orbit. In addition, given the
conditioning point Yn at the n-th iteration, the conditional distribution of the output sample Un is

5.3. NEO-MCMC ALGORITHM 111

P
(
Un ∈ B | In, X1:N

n

)
= P (Un ∈ B |Yn) = Q(Yn,B) where

Q(y,B) =
∑
k∈Z

wk(y)L(Tk(y))

Ẑ$y
1B(Tk(y)) , y ∈ Rd ,B ∈ B(Rd) . (5.13)

With these notations, if the Markov chain is started at Y0 = y, then for any n ∈ N, the law of
the n-th conditioning point is P (Yn ∈ A |Y0 = y) = Pn(y,A) and the law of the n-th sample is
P (Un ∈ B |Y0) = PnQ(y,B). Define π̃ the pdf given for y ∈ Rd by

π̃(y) =
ρ(y)

Z

∑
k∈Z

wk(y)L(Tk(y)) =
ρ(y)Ẑ$y

Z
. (5.14)

The following theorem shows that, for any initial condition y ∈ Rd, the distribution of the variable Yn
converges in total variation to π̃ and that the distribution of Un converges to π.

Theorem 33. The Markov kernel P is reversible w.r.t. the distribution π̃, ergodic and Harris positive,
i.e., for all y ∈ Rd, limn→∞ ‖Pn(y, ·)−π̃‖TV = 0. In addition, π = π̃Q and limn→∞ ‖PnQ(y, ·)−π‖TV =
0. Moreover, for any bounded function g and any y ∈ Rd, limn→∞ n

−1
∑n−1

i=0 g(Ui) = π(g), P-almost
surely, where {Ui}i∈N is defined in Algorithm 10 with Y0 = y.

The proof is postponed to Section 5.7.6.

Remark 34. We may provide another sampling procedure of {Yn}n∈N. Define the pdf on the ex-
tended space [N]× RdN by π̌(i, x1:N) = N−1π̃(xi)

∏N
j=1,j 6=i ρ(xj). Consider a Gibbs sampler targeting

π̌ consisting in (a) sampling X
1:N\{In−1}
n |(In−1, Xn−1) ∼ ∏

j 6=In−1
ρ(xj), (b) sampling In|X1:N

n ∼
Cat({Ẑ$

Xi
n
/
∑N

j=1 Ẑ$
Xj
n
}Ni=1 and (c) set Yn = XIn

n . This algorithm is a Gibbs sampler on π̌ and we easily
verify that the distribution of {Yn}n∈N is the same as Algorithm 10.

The next theorem provides non asymptotic quantitative bounds on the convergence in total variation.
The main interest of NEO-MCMC algorithm is motivated empirically from observed behaviour: the
mixing time of the corresponding Markov chain improves as N increases. This behaviour is quantified
theoretically in the next theorem. Moreover, this improvement is obtained with little extra computational
overhead, since samplingN points from the proposal distribution ρ, computing the forward and backward
orbits of the points and evaluating the normalizing constants {Ẑ$

Xi
n
}Ni=1 can be performed in parallel.

Theorem 35. Assume that L < ∞, see (5.5). Set εN = (N − 1)/(2L +N − 2) and κN = 1 − εN .
Then, for any y ∈ Rd and k ∈ N, ‖P k(y, ·)− π̃‖TV 6 κkN and ‖P kQ(y, ·)− π‖TV 6 κkN .

Instead of sampling the new points X2:N
n independently from ρ (Step 1 in Algorithm 10), it is possible

to draw the proposals X1:N
n conditional to the current point Yn−1; see [So06; CL07a; SN+18; Rui+21]

for related works. Following [Rui+21], we use a reversible Markov kernel w.r.t. the proposal ρ, i.e.,
such that ρ(x)m(x, x′) = ρ(x′)m(x′, x), assuming for simplicity that this kernel has density m(x, x′). If
ρ = N(0, σ2 Idd) , an appropriate choice is an autoregressive kernel m(x, x′) = N(x′;αx, σ2(1− α2) Idd).
More generally, we can use a Metropolis–Hastings kernel with invariant distribution ρ. In this case,
r1(x1, x1:N\{1}) =

∏N
j=2m(xj−1, xj) and for each i ∈ [2 : N],

ri(x
i, x1:N\{i}) =

i−1∏
j=1

m(xj+1, xj)
N∏

j=i+1

m(xj−1, xj) . (5.15)

Since m is reversible w.r.t. ρ, for all i, j ∈ [N], ρ(xi)ri(xi, x1:N\{i}) = ρ(xj)rj(x
j , x1:N\{j}) where

ri(x
i;x1:N\{i}) defines the the conditional distribution of X1:N\{i} given Xi = xi. The only modification

in Algorithm 10 is Step 1, which is replaced by: Draw Un ∈ [N] uniformly, set XUn
n = Yn−1 and sample

X
1:N\{Un}
n ∼ rUn(XUn

n , ·). The validity of this procedure is established in Section 5.7.6.

112 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

5.4 Continuous-time version of NEO and NEIS

The NEO framework can be thought of as an extension of NEIS introduced in [RV19]. NEIS focuses
on normalizing constant estimation and should be therefore compared with NEO-IS. In [RV19], the
authors do not consider possible extensions of these ideas to sampling problems. We consider here how
NEO could be adapted to continuous-time dynamical system. Proofs of the statements and detailed
technical conditions are postponed to Section 5.8.

Consider the Ordinary Differential Equation (ODE) ẋt = b(xt) , where b : Rd → Rd is a smooth
vector field. Denote by (φt)t∈R the flow of this ODE (assumed to be well-behaved). Under appropriate
regularity condition Jφt(x) = exp(

∫ t
0 ∇ · b(φs(x))ds); see Lemma 40. Let $: R→ R+ be a nonnegative

smooth function with finite support, with Ωc =
∫∞
−∞$(t)dt. The continuous-time counterpart of

the proposal distribution (5.1) is ρc
T(x) = (Ωc)−1

∫∞
−∞$(t)ρ(φ−t(x))Jφ−t(x)dt, which is a continuous

mixture of the pushforward of the proposal ρ by the flow of (φs)s∈R. Assuming for simplicity that
ρ(x) > 0 for all x ∈ Rd, then ρc

T(x) > 0 for all x ∈ Rd, and using again the IS formula, for any
nonnegative function f ,∫

f(x)ρ(x)dx =

∫
f(x)

ρ(x)

ρc
T(x)

ρc
T(x)dx =

∫ [∫ ∞
−∞

wc
t (x)f(φt(x))dt

]
ρ(x)dx, (5.16)

wc
t (x) = $(t)ρ(φt(x))Jφt(x)

/∫ ∞
−∞

$(s+ t)ρ(φs(x))Jφs(x)ds . (5.17)

These relations are the continuous-time counterparts of (5.2). Eqs. (5.16)-(5.17) define a version of
NEIS [RV19], with a finite support weight function $; see Sections 5.8.2 and 5.8.3 for weight functions
with infinite support. This identity is of theoretical interest but must be discretized to obtain a
computationally tractable estimator. For h > 0, denote by Th an integrator with stepsize h > 0 of the
ODE ẋ = b(x). We may construct NEO-IS and NEO-SNIS estimators based on the transform T← Th

and weights $k ← $(kh). We might show that for any bounded function f and for any x ∈ Rd,
limh↓0

∑
k∈Zwk(x)f(Tk

h(x)) =
∫∞
−∞w

c
t (x)f(φt(x))dt, where we omitted here the dependency in h of

wk. Therefore, taking h ↓ 0+, the NEO-IS converges to the continuous-version (5.16)-(5.17). There is
however an important difference between NEO and the NEIS method in [RV19] which stems from the
way (5.16)-(5.17) are discretized. Compared to NEIS, NEO-IS using T← Th and weights $k ← $(kh)
is unbiased for any stepsize h > 0. NEIS uses an approach inspired by the nested-sampling approach,
which amounts to discretizing the integral in (5.16) also in the state-variable x; see [Ski06; CR10]. This
discretization is biased which prevents the use of this approach to develop MCMC sampling algorithm;
see Section 5.8.

5.5 Experiments and Applications

Normalizing constant estimation The performance of NEO-IS is assessed on different normalizing
constant estimation benchmarks; see [JS20]. We focus on two challenging examples. Additional
experiments and discussion on hyperparameter choice are given in the supplementary material, see
Section 5.10.1.

(1) Mixture of Gaussian (MG25): π(x) = P−1
∑P

i=1 N(x;µi,j , Dd), where d ∈ {10, 20, 45},
Dd = diag(0.01, 0.01, 0.1, . . . , 0.1) and µi,j = [i, j, 0, . . . , 0]T with i, j ∈ {−2, . . . , 2}.

(2) Funnel distribution (Fun) π(x) = N(x1; 0, a2)
∏d
i=1 N(xi; 0, e2bx1) with d ∈ {10, 20, 45},

a = 1, and b = 0.5. In both case, the proposal is ρ = N(0, σ2
ρ Idd) with σ2

ρ = 5.
The NEO-IS estimator is compared with (i) the IS estimator using the proposal ρ, (ii) the Adaptive

Importance Sampling (AIS) estimator of [TK10], (iii) Stochastic Normalizing Flows (SNF)1 and (iv) the
Neural Importance Sampling (NIS)2. For NEO-IS, we use $k = 1[K](k) with K = 10 (ten steps on the

1Implementation available at https://github.com/noegroup/stochastic_normalizing_flows.
2Implementation available at https://github.com/ndeutschmann/zunis.

https://github.com/noegroup/stochastic_normalizing_flows
https://github.com/ndeutschmann/zunis

5.5. EXPERIMENTS AND APPLICATIONS 113

forward orbit), and conformal Hamiltonian dynamics γ = 1, M = 5 · Idd for dimensions d = {10, 20},
and γ = 2.5 for d = 45 (where γ is the damping factor, M the mass matrix, h is the stepsize of
the integrator). The parameters of AIS are set to obtain a complexity comparable to NEO-IS; see
Section 5.10.1. For NIS, we use the default parameters and for SNF we used the same architectures as
in [WKN20a]. In Fun, we set γ = 0.2, K = 10, M = 5 · Idd, and h = 0.3. The IS estimator was based
on 5 · 105 samples, and NIS, NEO-IS and AIS were computed with 5 · 104 samples. Figure 5.2 shows
that NEO-IS consistently outperforms the competing methods.

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

NEO IS SNF NIS AIS0

5

10

15

20

25

30

NEO IS SNF NIS AIS0

5

10

15

20

25

30

NEO IS SNF NIS AIS0

5

10

15

20

25

30

Figure 5.2: Boxplots of 500 independent estimations of the normalizing constant in dimension
d = {10, 20, 45} (from left to right) for MG25 (top) and Fun (bottom). The true value is given by the
red line. The figure displays the median (solid lines), the interquartile range, and the mean (dashed
lines) over the 500 runs.

Sampling NEO-MCMC is assessed for the distributions (MG25) (d = 40) and Fun (d = 20). NEO-
MCMC sampler is compared with (i) the No-U-Turn Sampler - Pyro library [Bin+19] - and (ii) i-SIR
algorithm [Rui+21]. The proposal distribution is ρ = N(0, σ2

ρ Idd) with σ2
ρ = 5. Dependent proposals

are used (see (5.15)) with m(x, x′) = N(x′;αx, σ2
ρ(1− α2) Idd) with α = 0.99. For NUTS, the default

parameters are used. For i-SIR, we use the same number of proposals N = 10, proposal distribution
and dependent proposal as for NEO-MCMC. To perform a fair comparison, we use the same clock time
for all three algorithms. The number of iterations for correlated i-SIR, NEO-MCMC, and NUTS are
n = 4 · 106, n = 4 · 105, and n = 5 · 105, respectively. Figure 5.3 displays the empirical two-dimensional
histograms of the two first coordinates of samples from the ground truth, i-SIR, NUTS and NEO-MCMC
sampler. It is worthwhile to note that NEO-MCMC algorithm performs much better for MG25 which
is a very challenging distribution, even for SOTA algorithm such as NUTS, which struggles to cross
energy barriers between modes. For Fun, NEO-MCMC performs favourably w.r.t. NUTS, which is well
adapted for this type of distributions.

Block Gibbs Inpainting with Deep Generative models and NEO-MCMC We apply NEO-
MCMC to the task of sampling the posterior of a deep latent variable model. To be consistent with
the rest of the paper, we use non-standard notation here with x being the latent variable and z the
observation. More precisely, we assume that x ∼ N(0, Idd) and a conditional distribution p(z | x) which
generates an image z = (z1, . . . , zD) ∈ RD. Given a family of parametric decoders {x 7→ pθ(z | x),
θ ∈ Θ}, and a training set D = {zi}Mi=1, training involves finding the MLE θ∗ = arg maxθ∈Θ pθ(D).
As pθ(z) =

∫
pθ(z | x)p(x)dx, the likelihood is intractable and to alleviate this problem, [KW14]

114 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

Figure 5.3: Empirical 2-D histogram of the samples of different algorithms targeting MG25 (top) and Fun
(bottom). Left to right: samples from the target distribution, correlated i-SIR, NUTS, NEO-MCMC.

proposed to train jointly an approximate posterior qφ(x|z) that maximizes a tractable lower-bound on
the log-likelihood: L(z, θ, φ) = EX∼qφ(·|z)[log pθ(z,X)/qφ(X|z)] 6 pθ(z), where qφ(x | z) is a tractable
conditional distribution with parameters φ ∈ Φ. It is assumed in the sequel that conditional to the
latent variable x, the coordinates are independent, i.e. pθ(z | x) =

∏D
i=1 pθ(z

i|x).

Note that it is possible to train VAE with the NEO algorithm, using the unbiased estimate of the
normalizing constant to construct an ELBO. This approach is described in the supplement Section 5.11.
We do not focus on this approach here and assume that the VAE has been trained and we are only
interested in the sampling problem. In our experiment, we use a VAE trained on CelebA dataset 3

[Liu+18]. We consider the Block Gibbs inpainting task introduced in [LHS18], Section 5.2.2. Given an
image z, denote by [zt, zb] the top and the bottom half pixels. Assume only zt? is observed, then we are
interested in in-painting the bottom of an image by the posterior distribution of zb given zt?. This is
achieved using Block Gibbs sampling. A two-stage Gibbs sampler amounts to (a) sampling pθ∗(x|zt, zb)
and (b) sampling pθ∗(zb|x, zt) = pθ∗(z

b|x) (since zb and zt are independent conditional on x). Given
zk = (zt?, z

b
k), we sample at each step xk ∼ pθ∗(x | zk) and then zbk+1 ∼ pθ∗(z

b | xk). We then set
zk+1 = (zt∗, z

b
k+1). Stage (b) is elementary but stage (a) is challenging. We use an MCMC-within-Gibbs

scheme using different samplers. We use the following decomposition of pθ∗(x | z) ∝ ρ(x)L(x) for
ρ(x) ∝ qβφ∗(x | z) and L(x) = pθ∗(x, z)/q

β
φ∗(x | z) with β ∈ (0, 1). It is possible to sample from ρ(x) as

qφ∗(x | z) is Gaussian. In our experiments with CelebA and the chosen trained VAE, we have x ∈ R10

(recall that x is our latent variable here), z ∈ R12288, and use β = 0.1. We then compare i-SIR, HMC
and NEO-MCMC sampler in stage (a), with the same computational complexity (N = 10, K = 12,
γ = 0.2 for NEO-MCMC, N = 120 for i-SIR, and HMC is run with K = 20 leap-frog steps). Again,
NEO-MCMC and i-SIR use dependent proposals, with m a Random Walk Metropolis kernel with
stepsize 0.1. For each algorithm, 10 steps are performed. Figure 5.8 displays the evolution of the
resulting Markov chains. The samples clearly illustrate that NEO-MCMC mixes better than i-SIR and
HMC. More details and examples are presented in the supplementary.

3Publicly available online, see https://github.com/YannDubs/disentangling-vae/tree/master/results/betaH_
celeba

https://github.com/YannDubs/disentangling-vae/tree/master/results/betaH_celeba
https://github.com/YannDubs/disentangling-vae/tree/master/results/betaH_celeba

5.5. EXPERIMENTS AND APPLICATIONS 115

Figure 5.4: Two examples for the Gibbs inpainting task for CelebA dataset. From top to bottom (twice)
: i-SIR, HMC and NEO-MCMC: From left to right, original image, blurred image to reconstruct, and
output every 5 iterations of the Markov chain. Last line: a forward orbit used in NEO-MCMC for the
second example.

116 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

5.6 Conclusion

In this paper, we have proposed a new family of algorithms, NEO, for computing normalizing constants
and sampling from complex distributions. This methodology comes with asymptotic and non-asymptotic
convergence guarantees. For normalizing constant estimation, NEO-IS compares favorably to state-
of-the-art algorithms on difficult benchmarks. NEO-MCMC is also able to sample some complex
distributions: it is particularly well-adapted to sampling multimodal distributions, thanks to its proposal
mechanism which avoids being trapped in local modes. There are numerous potential extensions to
this work. For example, it would be interesting to consider deterministic transformations other than
conformal Hamiltonian dynamics integrators. These transformations could be trained, as for Neural IS,
using a variation lower bound. It would also be interesting to further investigate the influence of the
mixture weights {$k}k∈Z on the efficiency of NEO.

Broader impact: Sampling from complex target distributions and computing their normalizing
constants has numerous applications. Our work proposes novel methods to address such problems and
has thus potential applications in many areas. This work does not present any foreseeable societal
consequence.

Acknowledgements

Arnaud Doucet is partly supported by the EPSRC grant EP/R034710/1. He also acknowledges
support of the UK Defence Science and Technology Laboratory (DSTL) and EPSRC under grant
EP/R013616/1. This is part of the collaboration between US DOD, UK MOD and UK EPSRC under
the Multidisciplinary University Research Initiative. Alain Durmus and Eric Moulines acknowledge
support of the Lagrange Mathematical and Computing Research Center.

5.7. PROOFS 117

Supplementary material

5.7 Proofs

5.7.1 Additional notation

By abuse of notation, we denote by Λ and π̃ the probability measures with density w.r.t. the Lebesgue
measure Λ and π̃ respectively.

5.7.2 Proof of (5.3)

The second expression of wk follows from JT−j (T
k(x)) = JTk−j (x)/JTk(x) which implies

wk(x) = $kρ(Tk(x))/
∑

j∈Z
$jρ(Tk−j(x))JT−j (T

k(x)) ,

= $kρ(Tk(x))JTk(x)/
∑

j∈Z
$jρ(Tk−j(x))JTk−j (x) = $kρ−k(x)

/∑
i∈Z

$k+iρi(x) .

5.7.3 Proof of Theorem 29

The unbiasedness of Ẑ$
X1:N follows directly from (5.2). Moreover, as Ẑ$

X1:N is unbiased and E$T <∞,
we can write

Varρ[Ẑ
$
X/Z] = Eρ[(Ẑ$X/Z)2]− 1 = E$T − 1 . (5.18)

As X1:N iid∼ ρ, Varρ[Ẑ
$
X1:N /Z] = N−1 Varρ[Ẑ

$
X/Z]. Finally, if L <∞, then Hoeffding’s inequality applies

and we can write for any ε > 0,

P(|Ẑ$X1:N /Z− 1| > ε) 6 2 exp(−2Nε2/(L)2) . (5.19)

Writing δ = 2 exp(−2Nε2/(L)2), we identify log(2/δ) = 2Nε2/(L)2 and ε = L
√

log(2/δ)/(2N). Plug-
ging this expression of ε in (5.19) concludes the proof.

5.7.4 Proof of Theorem 30

We first present two auxiliary lemmas necessary to establish Theorem 30.

Lemma 36. Let A,B be two integrable random variables satisfying |A/B| 6 M almost surely and
denote a = E[A], b = E[B]. Then,

|E[A/B]− a/b| 6
√

Var(A/B) Var(B)

b
, (5.20)

Var(A/B) 6 E
[
|A/B − a/b|2

]
6

2

B2

(
E
[
|AN −A|2

]
+M2E

[
|BN −B|2

])
. (5.21)

Proof. Write first, using the Cauchy-Schwarz inequality,∣∣∣∣E [AB
]
− a

b

∣∣∣∣ =

∣∣∣∣E [AB
]
− E [A]

b

∣∣∣∣ =

∣∣∣∣E [A(1

B
− 1

b

)]∣∣∣∣ ,
=

∣∣∣∣E [AB
(
b−B
b

)]∣∣∣∣ =

∣∣∣∣E [(AB − E
[
A

B

])(
B − b
b

)]∣∣∣∣ ,
6

√
Var(A/B)

√
Var(B)

b
.

Moreover, using |A/B| 6M yields∣∣∣∣AB − a

b

∣∣∣∣ =

∣∣∣∣1b (A− a) +A

(
1

B
− 1

b

)∣∣∣∣ 6 1

b
|A− a|+ |A|

Bb
|B − b| ,

6
1

b
|A− a|+ M

b
|B − b| .

118 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

Therefore,

|A/B − a/b|2 6
2

b2
(
|A− a|2 +M2|B − b|2

)
,

Using that E
[
|A/B − a/b|2

]
= Var(A/B) + |E[A/B]− a/b|2 concludes the proof.

We get the following lemma from [Dou+11], Lemma 4.

Lemma 37. Assume that A and B are random variables and that there exist positive constants
b,M,C,K such that

(i) |A/B| 6M , P-a.s. ,

(ii) for all ε > 0 and all N > 1, P (|B − b| > ε) 6 K exp(−Rε2) ,

(iii) for all ε > 0 and all N > 1, P (|A| > ε) 6 K exp
(
−Rε2/M2

)
,

then,
P(|A/B| > ε) 6 2K exp(−Rb2ε2/4M2) .

Proof. By the triangle inequality,

|A/B| =
∣∣∣∣AB (b−B)b−1 + b−1A

∣∣∣∣ ,
6 b−1 |A/B| |b−B|+ b−1 |A| 6Mb−1 |b−B|+ b−1 |A| .

Therefore,

{|A/B| > ε} ⊆
{
|B − b| > εb

2M

}
∪
{
|A| > εb

2

}
.

Then, conditions (ii) and (iii) imply that

P (|A/B| > ε) 6 P
(
|B − b| > εb

2M

)
+ P

(
|A| > εb

2

)
,

6 2K exp(−Rb2ε2/(4M2)) .

Proof of Theorem 30. Let g : Rd → R such that supx∈Rd |g| (x) 6 1 and denote π(g) =
∫
gdπ. We use

Lemma 36 with A = AN and B = Ẑ$
X1:N where

AN =
1

N

N∑
i=1

∑
k∈Z

wk(X
i)L(Tk(Xi))g(Tk(Xi)) , Ẑ$X1:N =

1

N

N∑
i=1

∑
k∈Z

wk(X
i)L(Tk(Xi)) . (5.22)

By construction, since supx∈Rd |g| (x) 6 1, almost surelyAN/Ẑ$X1:N 6 1 and Var(Ẑ$
X1:N) = N−1Var(Ẑ$X1).

Then, using (5.2) with a = E[AN] = Zπ(g) and b = E[Ẑ$
X1:N] = Z, Lemma 36 implies

∣∣JNEO
$,N (g)− π(g)

∣∣ =
∣∣∣E[AN/Ẑ

$
X1:N]− a/b

∣∣∣ 6 N−1/2
√

Var(AN/Ẑ$X1:N)Var(Ẑ$
X1) . (5.23)

On the other hand,

E
[
|AN − a|2

]
= N−1EX∼ρ

[{∑
k∈Zwk(X)L(Tk(X))g(Tk(X))− Zπ(g)

}2]
6 N−1Z2E$T .

5.7. PROOFS 119

These inequalities yield using Var(Ẑ$X1) 6 E$T and Lemma 36 again:

E
[
|JNEO
$,N (g)− π(g)|2

]
6

2

N
(E$T + Var(Ẑ$X1)) 6

4

N
E$T ,

|E
[
JNEO
$,N (g)− π(g)

]
| 6

√
2(E$T + Var(Ẑ$

X1))Var(Ẑ$
X1)

N
6

2E$T
N

,

which concludes the proof.
Define

ÃN = N−1
N∑
i=1

∑
k∈Z

wk(X
i)L(Tk(Xi))

(
g(Tk(Xi))− π(g)

)
.

With this notation, the proof of (5.9) relies on the application of Lemma 37 to A = ÃN and B = Ẑ$
X1:N ,

since
JNEO
$,N (g)− π(g) = AN/Ẑ

$
X1:N .

As supx∈Rd |g| (x) 6 1, we get that ÃN/Ẑ$X1:N 6 2. By (5.2), E[Ẑ$
X1:N] = Z and Ẑ$

X1:N = N−1
∑N

i=1Wi

with Wi =
∑

k∈Zwk(X
i)L(Tk(Xi)) 6 L. Then, by Hoeffding’s inequality, for all ε > 0,

P(|BN − Z| > ε) 6 2 exp(−2N(ε/L)2) .

Similarly, AN is centered and AN = N−1
∑N

i=1 Ui with

Ui =
∑
k∈Z

wk(X
i)L(Tk(Xi)){g(Tk(Xi))− π(g)}

and |Ui| 6 2L almost surely. By Hoeffding’s inequality, for all ε > 0,

P(|AN | > ε) 6 2 exp(−Nε2/(8(L)2)) .

The assumptions of Lemma 37 are met so that

P(|JNEO
$,N (g)− π(g)| > ε) 6 4 exp(−ε2NZ2/[32(L)2]) ,

which concludes the proof.

5.7.5 Proof of Lemma 31

As wk(x) = $kρ(Tk(x))/{ΩρT(Tk(x))}, by Jensen’s inequality,

E$T =

∫ (∑
k∈Z

wk(x)L(Tk(x))/Z

)2

ρ(x)dx =

∫ (∑
k∈Z

$k

Ω

π(Tk(x))

ρT(Tk(x))

)2

ρ(x)dx ,

6
∫ ∑

k∈Z

$k

Ω

(
π(Tk(x))

ρT(Tk(x))

)2

ρ(x)dx ,

6 Ω−1
∑
k∈Z

$k

∫ (
π(Tk(x))

ρT(Tk(x))

)2

ρ(x)dx .

Using the change of variables y = Tk(x) yields, by (5.1),

E$T 6 Ω−1
∑
k∈Z

$k

∫ (
π(y)

ρT(y)

)2

ρ(T−k(y))JT−k(y)dy 6
∫ (

π(y)

ρT(y)

)2

ρT(y)dy .

120 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

5.7.6 Proofs of NEO MCMC sampler

Proof of Theorem 33. Note first that by symmetry, we have

P (y,A) = N−1

∫ N∑
i=1

δy(dx
i)

N∏
j=1,j 6=i

ρ(xj)dxj
N∑
k=1

Ẑ$
xk∑N

j=1 Ẑ$
xj

1A(xk) . (5.24)

We begin with the proof of reversibility of P w.r.t. π̃. Let f, g be nonnegative measurable functions.
By definition of P ,

∫
π̃(dy)P (y,dy′)f(y)g(y′) =

1

NZ

∫ N∑
i=1

ρ(dy)Ẑ$y f(y)δy(dx
i)

N∏
l=1,l 6=i

ρ(dxl)

N∑
k=1

Ẑ$
xk∑N

j=1 Ẑ$
xj

g(xk) ,

=
1

NZ

∫ N∑
i=1

Ẑ$xif(xi)
N∏
l=1

ρ(dxl)
N∑
k=1

Ẑ$
xk∑N

j=1 Ẑ$
xj

g(xk) ,

=
1

NZ

∫ N∏
l=1

ρ(dxl)

∑N
i=1 Ẑ$

xi
f(xi)

∑N
k=1 Ẑ$

xk
g(xk)∑N

j=1 Ẑ$
xj

,

=

∫
π̃(dy)P (y,dy′)f(y′)g(y) ,

which shows that P is π̃-reversible. We now establish that P is π̃-irreducible. We have for y ∈ Rd,
A ∈ B(Rd),

P (y,A) =

∫
δy(dx

1)
N∑
i=1

Ẑ$
xi

N Ẑ$
x1:N

1A(xi)
N∏
j=2

ρ(dxj)

=

∫
Ẑ$y

Ẑ$y +
∑N

j=2 Ẑ$
xj

1A(x)

N∏
j=2

ρ(dxj) +

∫ N∑
i=2

Ẑ$
xi

Ẑ$y +
∑N

j=2 Ẑ$
xj

1A(xi)

N∏
j=2

ρ(dxj)

>
N∑
i=2

∫
Ẑ$
xi

Ẑ$y + Ẑ$
xi

+
∑N

j=2,j 6=i Ẑ$
xj

1A(xi)
N∏
j=2

ρ(dxj)

>
N∑
i=2

∫
π̃(dxi)1A(xi)

∫
Z

Ẑ$y + Ẑ$
xi

+
∑N

j=2,j 6=i Ẑ$
xj

N∏
j=2,j 6=i

ρ(dxj) .

Since the function f : z 7→ (z + a)−1 is convex on R+ for a > 0, we get for i ∈ {2, . . . , N},

∫
Z

Ẑ$y + Ẑ$
xi

+
∑N

j=2,j 6=i Ẑ$
xj

N∏
j=2,j 6=i

ρ(dxj) >
Z

Ẑ$y + Ẑ$
xi

+
∫ ∑N

j=2,j 6=i Ẑ$
xj

∏N
j=2,j 6=i ρ(dxj)

>
Z

Ẑ$y + Ẑ$
xi

+ Z(N − 2)
. (5.25)

Therefore, for A ∈ B(Rd) satisfying π̃(A) > 0, we get P (y,A) > 0 for any y ∈ Rd since Ẑ$x <∞ for any
x ∈ Rd. By definition, P is π̃-irreducible.

We show that P is Harris recurrent using [Tie94], Corollary 2. To this end, since P is π̃-
irreducible, it is sufficient to show that P is a Metropolis type kernel. Define α(x1, x2) = (N −
1)
∫ ∏N

j=3 ρ(dxj)Ẑ$x2/
∑N

j=1 Ẑ$
xj

for x1, x2 ∈ Rd and ρ2:N (dx2:N) = {∏N
j=2 ρ2:N (xj)}dx2:N . Then, by

5.7. PROOFS 121

(5.12), we get with this notation, for y ∈ Rd, A ∈ B(Rd),

P (y,A)

=

∫
δy(dx

1)ρ2:N (dx2:N)

N∑
i=2

Ẑ$
xi

N Ẑ$
x1:N

1A(xi) +

∫
δy(dx

1)ρ2:N (dx2:N)
Ẑ$x1

N Ẑ$
x1:N

1A(x1)

=

N∑
i=2

∫
δy(dx

1)ρ2:N (dx2:N)
Ẑ$
xi

N Ẑ$
x1:N

1A(xi) +

∫
δy(dx

1)ρ2:N (dx2:N)
Ẑ$x1

N Ẑ$
x1:N

1A(x1)

=
N∑
i=2

∫
δy(dx

1)ρ(dxi)

∫ N∏
j=2,j 6=i

ρ(xj)dxj
Ẑ$
xi
1A(xi)

N Ẑ$
x1:N

+

∫
δy(dx

1)ρ2:N (dx2:N)
Ẑ$x11A(x1)

N Ẑ$
x1:N

=

N∑
i=2

∫
α(y, xi)

(N − 1)
1A(xi)ρ(dxi) +

∫
δy(dx

1)ρ2:N (dx2:N)

{
1−

N∑
i=2

Ẑ$
xi

N Ẑ$
x1:N

}
1A(x1)

=

∫
A
α(y, y′)ρ(y′)dy′ +

(
1−

∫
α(y, y′)ρ(y′)dy′

)
δy(A) . (5.26)

With the terminology of [Tie94], Corollary 2, P is Metropolis type kernel and therefore is Harris
recurrent.

Note that Algorithm 10 defines a Markov chain {Yi, Ui}i∈N taking for U0 an arbitrary initial point with
Markov kernel denoted by P̃ . By abuse of notation, we denote by {Yi, Ui}i∈N the canonical process on the
canonical space (Rd ×Rd)N endowed with the corresponding σ-field and denote by Py,u the distribution
associated with the Markov chain with kernel P̃ and initial distribution δy ⊗ δu. Denote for any y ∈ Rd
by Py the marginal distribution of Py,u with respect to {Yi}i∈N, i.e. Py(A) = P(y,u)({Yi}i∈N ∈ A) for
u ∈ Rd, noting that by definition, P(y,u)(A×(Rd)N) does not depend on u. In addition, under Py, {Yi}i∈N
is a Markov chain associated with P . Therefore, since P is π̃-irreducible and Harris recurrent, we get
by [Dou+18], Theorem 11.3.1, and [Tie94], Theorem 2, 3. for any y ∈ Rd, limk→∞ ‖δyP k − π̃‖TV = 0
and for any bounded and measurable function g,

n−1
n∑
k=1

g(Yk) = π̃(g) , Py-almost surely . (5.27)

We now turn to proving the properties regarding Q. For any B ∈ B(Rd), using (5.2), we obtain∫
π̃(y)Q(y,B)dy = Z−1

∫
ρ(y)

∑
k∈Z

wk(y)L(Tk(y))1B(Tk(y))dy = π(B) .

Using for all y ∈ Rd, limn→∞ ‖Pn(y, ·)− π̃‖TV = 0, we get limn→∞ ‖PnQ(y, ·)− π‖TV = 0. It remains
to show the stated Law of Large Numbers. Let y, u ∈ Rd and g be a bounded measurable function.
Define for any i ∈ N∗, Ũi = g(Ui) − Qg(Yi). By definition, for any i ∈ N∗,

∣∣∣Ũi∣∣∣ 6 2 supx∈Rd |g(x)|
and E(y,u)[Ũi|Fi−1] = 0, where {Fk}k∈N is the canonical filtration. Therefore, {Ũi}i∈N∗ are {Fk}k∈N-
martingale increments and {Sk =

∑k
i=1 Ũi}k∈N is a {Fk}k∈N-martingale. Using [HH80], Theorem 2.18,

we get
lim
n→∞

{Sn/n} = 0 , P(y,u)-almost surely . (5.28)

The proof is completed using that limn→∞{n−1
∑n

i=1Qg(Yi)} = π̃(Qg) = π(g), Py-almost surely by
(5.27) and therefore by definition, P(y,u)-almost surely.

Proof of Theorem 35. We have for (x,A) ∈ Rd × B(Rd),

P (y,A) >
N∑
i=2

∫
π̃(dxi)1A(xi)

∫
Z

Ẑ$y + Ẑ$
xi

+
∑N

j=2,j 6=i Ẑ$
xj

N∏
j=2,j 6=i

ρ(dxj) .

122 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

Moreover, as for any x ∈ Rd, Ẑ$x /Z 6 L,∫
Z

Ẑ$y + Ẑ$
xi

+
∑N

j=2,j 6=i Ẑ$
xj

N∏
j=2,j 6=i

ρ(dxj) >
Z

Ẑ$y + Ẑ$
xi

+ Z(N − 2)
>

1

2L +N − 2
.

We finally obtain the inequality

P (x,A) > π̃(A)× N − 1

2L +N − 2
= εN π̃(A) . (5.29)

The proof for P is concluded from [Dou+18, Theorem 18.2.4].
As ‖P k(y, ·)− π̃‖TV 6 κkN , for any bounded function f , ‖f‖∞ 6 1, we have |P kf(y)− π̃(f)| 6 κkN ,

by definition of the Total Variation Distance. Then, writing f = Qg for any bounded function g,
‖g‖∞ 6 1, we have ‖f‖∞ 6 1 and

|P kf(y)− π̃(f)| = |P kQg(y)− π̃Q(g)| = |P kQg(y)− π(g)| 6 κkN . (5.30)

Write now P the Markov kernel extending to correlated proposals: for y ∈ Rd and A ∈ B(Rd),

P (y,A) = N−1

∫ N∑
i=1

δy(dx
i)ri(x

i, dx1:n\{i})

N∑
k=1

Ẑ$
xk

N Ẑ$
x1:N

1A(xk) , (5.31)

where the Markov kernels Ri are defined by Ri(xi, dx1:N\{i}) = ri(x
i, x1:N\{i})dx1:N\{i} and ri by (5.15).

Theorem 38. P is π̃-invariant.

Proof. Define the Nd-dimensional probability measure ρ̄N (dx1:N) = ρ(dx1)R1(x1,dx2:n). Let A ∈
B(Rd). Then, we have

π̃P (A) = N−1

∫
π̃(dy)

∫ N∑
i=1

δy(dx
i)Ri(x

i, dx1:n\{i})
N∑
k=1

Ẑ$
xk

N Ẑ$
x1:N

1A(xk)

= (NZ)−1

∫ N∑
i=1

ρ(dxi)Ẑ$xiRi(x
i, dx1:n\{i})

N∑
k=1

Ẑ$
xk

N Ẑ$
x1:N

1A(xk)

= (NZ)−1

∫
ρ̄N (dx1:N)

N∑
i=1

Ẑ$xi

N∑
k=1

Ẑ$
xk

N Ẑ$
x1:N

1A(xk)

= (NZ)−1

∫ N∑
k=1

Ẑ$xk ρ̄N (dx1:N)1A(xk)

= (NZ)−1

∫ N∑
k=1

Ẑ$xkρ(dxk)1A(xk) = π̃(A) .

5.8 Continuous-time limit of NEO and NEIS

5.8.1 Proof for the continuous-time limit

Consider h̄ > 0 and a family {Th : h ∈
(
0, h̄
]
} of C1-diffeomorphisms. For N ∈ N∗ and a bounded and

continuous f : Rd → R, write

INEO
$,N,h(f) = N−1

N∑
i=1

∑
k∈Z

wk,h(Xi)f(Tk
h(Xi)) , (5.32)

5.8. CONTINUOUS-TIME LIMIT OF NEO AND NEIS 123

where {Xi}Ni=1
iid∼ ρ and for some weight function $c : R→ R+ with bounded support (see H3), k ∈ Z

and h > 0, setting $k,h = $c(kh),

wk,h(x) = $k,hρ−k(x)
/∑

i∈Z
$k+i,hρi(x) . (5.33)

We show in this section the convergence of the sequence of NEO-IS estimators {INEO
$,N,h(f) : h ∈(

0, h̄
]
} as h ↓ 0 to its continuous counterpart, the version (5.16) of NEIS [RV19], with weight function

$, in the case where for any h ∈
(
0, h̄
]
, Th corresponds to one step of a discretization scheme with

stepsize h of the ODE
ẋt = b(xt) , (5.34)

where b : Rd → Rd is a drift function. We are particularly interested in the case where (5.34) corresponds
to the conformal Hamilonian dynamics (5.10) and {Th : h ∈

(
0, h̄
]
} to its conformal symplectic Euler

discretization: for all (q, p) ∈ R2d,

Th(q, p) = (q + hM−1{e−hγp− h∇U(q)}, e−hγp− h∇U(q)) . (5.35)

We make the following conditions on b, ρ, $c and {Th : h ∈
(
0, h̄
]
}.

H1. The function b is continuously differentiable and Lb-Lipschitz.

Under H1, consider (φt)t>0 the differential flow associated with (5.34), i.e. φt(x) = xt where (xt)t∈R
is the solution of (5.34) starting from x. Note that H1 implies that (t, x) 7→ φt(x) is continuously
differentiable on R× Rd, see [Har82, Theorem 4.1 Chapter V].

H1 is satisfied in the case of the conformal Hamiltonian dynamics if the potential U is continuously
differentiable and with Lipschitz gradient, that is there exists LU ∈ R∗+ such that for any x1, x2 ∈ Rd,
‖∇U(x1)−∇U(x2)‖ 6 LU‖x1 − x2‖.

H2. For any h ∈
(
0, h̄
]
, Th : Rd → Rd is a C1-diffeomorphism. In addition, it holds:

(i) there exist C > 0 and δ ∈ (0, 1] such that for any x ∈ Rd,

‖Th(x)− (x+ hb(x))‖ 6 Ch1+δ(1 + ‖x‖) ;

(ii) for any x ∈ Rd and T ∈ R∗+,

lim
h↓0

max
k∈[−bT/hc:bT/hc]

‖Jφkh(x)− JTkh
(x)‖ = 0 .

Note that H2 is automatically satisfied for the conformal symplectic Euler discretization (5.35) of
the conformal Hamiltonian dynamics. Indeed, in that case D b(φt(x)) = γd, and therefore Jφt(x) = eγdt

for t ∈ R, and for any h > 0, k ∈ Z, JTkh
(x) = eγdhk; see [Fra+20].

Define
support($c) = {t ∈ R : $c(t) 6= 0} . (5.36)

H3. (i) Λ is continuous and positive on Rd

(ii) $c is piecewise continuous on R, its support support($c) is bounded and sup(s,t)∈A$ $
c(t)/$c(t+

s) = m <∞ where

A$ = {(s, t) ∈ R2; t ∈ support($c), (s+ t) ∈ support($c)} .

(iii) Moreover, for any x ∈ Rd, we have ρcT(x) =
∫
$c(t)Λ(φt(x))Jφt(x)dt > 0.

Note that H3 implies that supt∈R |$c(t)| < +∞. H3 is automatically satisfied for example in the
case $c = 1[−T1,T2] for T1, T2 > 0.

124 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

Theorem 39. Assume H1, H2, H3. For any x ∈ Rd and f : Rd → R continuous and bounded,

lim
h↓0

∣∣∣∣∣∑
k∈Z

wk,h(x)f(Tk
h(x))−

∫ ∞
−∞

wc
t (x)f(φt(x))dt

∣∣∣∣∣ = 0 ,

where {wk,h}k∈Z and wc
t are defined in (5.33) and (5.17) respectively, i.e. for x ∈ Rd and t ∈ R,

wc
t (x) = $c(t)ρ(φt(x))Jφt(x)

/∫ ∞
−∞

$c(s+ t)ρ(φs(x))Jφs(x)ds . (5.37)

Proof. Let f be a bounded continuous function, x ∈ Rd. Setting

gk,h(x) = ρ(Tk
h(x))$c(kh)JTkh

(x)f(Tk
h(x))

h∆k,h(x) = h
∑
i∈Z

Λ(Ti
h(x))$c((k + i)h)JTih(x) ,

we have that∑
k>0

hgk,h(x)

h∆k,h(x)
=

∫ T$

0

1

h∆bt/hc,h(x)
gbt/hc,h(x)dt+

∫ hbT$/hc+h

T$

1

h∆bt/hc,h(x)
gbt/hc,h(x)dt ,

as gk,h(x) = 0 when k > bT$/hc. Therefore, we can consider the following decomposition,∣∣∣∣∣∣
∑
k>0

ρ(Tk
h(x))$c(kh)JTkh

(x)f(Tk
h(x))∑

i∈Z Λ(Ti
h(x))$c((k + i)h)JTih(x)

−
∫ T$

0

$c(t)Λ(φt(x))Jφt(x)f(φt(x))dt∫
$c(t+ s)Λ(φs(x))Jφs(x)ds

∣∣∣∣∣∣ 6 A+B

with

A =

∣∣∣∣∫ T$

0

1

h∆bt/hc,h(x)

{
gbt/hc,h(x)−$c(t)Λ(φt(x))Jφt(x)f(φt(x))

}
dt

∣∣∣∣
+

∣∣∣∣∣
∫ hbT$/hc+h

T$

1

h∆bt/hc,h(x)
gbt/hc,h(x)dt

∣∣∣∣∣ ,
and

B =

∫ T$

0

∣∣∣∣$c(t)Λ(φt(x))Jφt(x)f(φt(x))dt

h∆bt/hc,h(x)
− $c(t)Λ(φt(x))Jφt(x)f(φt(x))∫

$c(t+ s)Λ(φs(x))Jφs(x)ds

∣∣∣∣ dt ,
We bound those terms separately. First of all, under H3-(ii), for any k such that kh ∈ [0, T$], we

have h∆k,h(x) > hm−1∆0,h(x). Second, as limh↓0 h∆0,h(x) =
∫ T$

0 Λ(φs(x))Jφs(x)$c(s)ds > 0, there
exists some h̃ > 0 and c > 0 such that for all k ∈ Z, h < h̃ implies∫ T$

0
$c(t)Λ(φt(x))Jφt(x)dt > c , h∆k,h(x) > hm−1∆0,h(x) > c . (5.38)

Then, for h < h̃,

A 6 c−1

∫ T$

0
|gbt/hc,h(x)−$c(t)Λ(φt(x))Jφt(x)f(φt(x))|dt

+ c−1

∫ hbT$/hc+h

T$

∣∣gbt/hc,h(x)
∣∣dt .

By H1 and H3, the function t→ $c(t)Λ(φt(x))Jφt(x)f(φt(x)) is continuous on the compact [0, 2T$]
and thus is bounded. Therefore, for any h ∈

(
0, h̄
)
,

sup
t∈[0,2T$]

|$c(t)Λ(φt(x))Jφt(x)f(φt(x))| 6 sup
t∈R
|$c| sup

x∈Rd
|f(x)| sup

t∈[0,2T$]
|Λ(φt(x))Jφt(x)| <∞ . (5.39)

5.8. CONTINUOUS-TIME LIMIT OF NEO AND NEIS 125

Under H2, (5.39) and Lemma 43 imply that

sup
t∈[0,hbT$/hc+h)

gbt/hc,h(x)

6 sup
t∈R
|$c(t)| sup

x∈Rd
|f(x)| sup

t∈[0,hbT$/hc+h)
ρ(T

bt/hc
h (x))J

T
bt/hc
h

(x) <∞ ,

Then, limh↓0
∫ hbT$/hc+h
T$

∣∣gbt/hc,h(x)
∣∣ dt = 0. Finally, Lemma 44 implies that limh↓0A = 0.

Moreover, setting for t ∈ [0, T$],

∆B
t,h(x) (5.40)

=

∫
|Λ(φhbs/hc(x))$c(h(bs/hc+ bt/hc))Jφhbs/hc(x) −$c(s+ t)Λ(φs(x))Jφs(x))|1A$(s, t)ds

+

∫ h(bT$/hc−bt/hc+1)

T$−hbt/hc
|Λ(φhbs/hc(x))$c(h(bs/hc+ bt/hc))Jφhbs/hc(x)|1A$(s, t)ds ,

we have for h < h̃, by (5.38) and H3-(ii),

B =

∫ T$

0

∣∣∣∣$c(t)Λ(φt(x))Jφt(x)f(φt(x))

h∆bt/hc,h(x)
− $c(t)Λ(φt(x))Jφt(x)f(φt(x))∫

$c(s+ t)Λ(φs(x))Jφs(x)ds

∣∣∣∣dt
6
∫ T$

0

$c(t)Λ(φt(x))Jφt(x)f(φt(x))

h∆bt/hc,h(x)
∫
$c(s+ t)Λ(φs(x))Jφs(x)ds

∆B
t,h(x)dt

6 mc−2

∫ T$

0
$c(t)Λ(φt(x))Jφt(x)f(φt(x))∆B

t,h(x)dt

6 mc−2 sup
t∈R
|$c(t)| sup

x∈Rd
|f(x)| sup

t∈[0,T$]
|Λ(φs(x))Jφs(x)|

∫ T$

0
∆B
t,h(x)dt . (5.41)

By H1 and H3, the function s→ Λ(φs(x))Jφs(x) is continuous on the interval [−T$, T$] and thus is
bounded. Therefore, for any h ∈

(
0, h̄
)
,

sup
(s,t)∈A$

|$c(h(bt/hc+ bs/hc))Λ(φhbs/hc(x))Jφhbs/hc(x)|

6 sup
(s,t)∈A$

|$c(s+ t)Λ(φs(x))Jφs(x)| < T$ sup
s∈R
|$c(s)| sup

s∈[−T$,T$]
|Λ(φs(x))Jφs(x)| <∞ . (5.42)

This implies that

lim
h↓0

∫ h(bT$/hc−bt/hc+1)

T$−hbt/hc
|Λ(φhbs/hc(x))$c(h(bs/hc+ bt/hc))Jφhbs/hc(x)|ds = 0 .

Moreover, for any t ∈ [0, T$], the function

s 7→ |$c(h(bt/hc+ bs/hc))Λ(φhbs/hc(x))Jφhbs/hc(x)−$c(t+ s)Λ(φs(x))Jφs(x)|1A$(s, t)

converges pointwise to 0 for almost all s ∈ R when h ↓ 0 using H1, H3 and the continuity of s 7→ φs(x).
The Lebesgue dominated convergence theorem applies and by (5.40), for all t ∈ [0, T$],

lim
h↓0

∆B
t,h(x) = 0 .

Moreover, using h∆k,h(x) = h
∑

i∈Z Λ(Ti
h(x))$c((k + i)h)JTih(x) and (5.42),

sup
t∈[0,T$]

sup
h∈(0,h̄)

∆B
t,h(x) <∞ .

The Lebesgue dominated convergence theorem and (5.41) show that limh↓0B = 0 which concludes the
proof.

126 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

Supporting Lemmas

For f ∈ C1(Rd,Rd), define Jf (x) the Jacobian matrix of f evaluated at x and the divergence operator
by D f(x) = Tr[Jf (x)].

Lemma 40. Let b be a C1 vector field in Rd and (φt)t∈R be the flow of the ODE (5.34). For any t ∈ R,
the Jacobian of φt is given by

Jφt(x) = exp(
∫ t

0 D b(φs(x))ds) .

Proof. First, for t ∈ R and x ∈ R, write A(t, x) = Jφt(x) the Jacobian matrix of φt evaluated at x. By
Jacobi’s formula, ˙detA(t, x) = Tr[adj(A(t, x)) · Ȧ(t, x)], where Tr[M] denotes the trace of a matrix M
and adj(M) its adjugate, i.e. the transpose of the cofactor matrix ofM such that adj(M)M = det(M) Id.
Since for all t and x, Ȧ(t, x) = Jb◦φt(x) = Jb(φt(x)) ·A(t, x), then

J̇φt(x) = Tr[adj(A(t, x)) · Jb(φt(x)) ·A(t, x)] = Tr[Jb(φt(x))]Jφt(x) . (5.43)

Integrating this ODE yields Jφt(x) = exp(
∫ t

0 D b(φs(x))ds).

Lemma 41. Assume H1. Then, there exists C > 0 such that for any x ∈ Rd, t ∈ R, k ∈ Z, h > 0,

‖φt(x)‖ 6 CeC|t|(‖x‖+ 1) ,

‖Tk
h(x)‖ 6 CeC|kh|(‖x‖+ 1) .

This lemma follows from Gronwall’s inequality and H1.

Lemma 42. Assume H1 and H2-(i). There exists C > 0 such that for any x ∈ Rd, h ∈
(
0, h̄
)
,

‖Th(x)− φh(x)‖ 6 C{1 + ‖x‖}‖h1+δ . (5.44)

Proof. Under H1 and H2-(i), we have

‖Th(x)− φh(x)‖ 6 ‖x+ hb(x)− φh(x)‖+ CFh
1+δ(1 + ‖x‖) ,

and as φh(x) = x+
∫ h

0 b(φs(x))ds,

‖x+ hb(x)− φh(x)‖ = ‖hb(x)−
∫ h

0 b(φs(x))‖ 6 hLb sups∈[0,h] ‖φs(x)− x‖
6 Lbh

2{Lb sup
s∈[0,h]

φs(x) + ‖b(0)‖} . (5.45)

The proof is completed using Lemma 41.

Lemma 43. Assume H1 and H2-(i). There exists C > 0 such that for any x ∈ Rd, k ∈ N, h ∈
(
0, h̄
)
,

kh 6 T$,
‖Tk

h(x)− φkh(x)‖ 6 CekhC(1 + ‖x‖)hδ . (5.46)

Proof. Using Lemma 42, H1 and H2-(i), there exist C1, C2, C3 > 0 such that for any x ∈ Rd, k ∈
N, h ∈

(
0, h̄
)
, kh 6 T$,

‖Tk+1
h (x)− φ(k+1)h(x)‖ 6 ‖Tk+1

h (x)− Th ◦φkh(x)‖+ ‖Th ◦φkh(x)− φ(k+1)h(x)‖
6 (1 + hLb)‖Tk

h(x)− φkh(x)‖
+ h1+δC1{2 + ‖Tk

h(x)‖+ ‖φkh(x)‖}+ ‖Th ◦φkh(x)− φ(k+1)h(x)‖
6 (1 + hLb)‖Tk

h(x)− φkh(x)‖+ h1+δ2C1C2e
C2T${1 + ‖x‖}+ C3{1 + ‖φkh(x)‖}h1+δ

6 (1 + hLb)‖Tk
h(x)− φkh(x)‖

+ h1+δ2C1C2e
C2T${1 + ‖x‖}+ C3{1 + C2(1 + ‖x‖)}h1+δeC2T$

6 (1 + hLb)‖Tk
h(x)− φkh(x)‖+AT {1 + ‖x‖}h1+δ ,

5.8. CONTINUOUS-TIME LIMIT OF NEO AND NEIS 127

with AT = (2C1C2 + C3(1 + C2))eC2T$. A straightforward induction yields

‖Tk
h(x)− φkh(x)‖ 6 (1 + hLb)

k

Lb
AT (1 + ‖x‖)hδ .

Lemma 44. Assume H1, H2, H3 . For any x ∈ Rd, and f : Rd → Rd bounded and continuous,

lim
h↓0

∫ T$

0

∣∣∣$c(h bt/hc)Λ(T
bt/hc
h (x))J

T
bt/hc
h

(x)f(T
bt/hc
h (x))−$c(t)Λ(φt(x))Jφt(x)f(φt(x))

∣∣∣ dt = 0 .

Proof. Let x ∈ Rd. Consider the following decomposition, for any h < h̄,∫ T$

0

∣∣∣$c(h bt/hc)Λ(T
bt/hc
h (x))J

T
bt/hc
h

(x)f(T
bt/hc
h (x))−$c(t)Λ(φt(x))Jφt(x)f(φt(x))

∣∣∣ dt
6 h

T$

∑
k∈Z$

c(kh)|Λ(Tk
h(x))JTkh

(x)f(Tk
h(x))− Λ(φkh(x))Jφkh(x)f(φkh(x))|

+
∫ T$

0 |$c(t)Λ(φt(x))Jφt(x)f(φt(x))−$c(h bt/hc)Λ(φhbt/hc(x))Jφhbt/hc(x)f(φhbt/hc(x))|dt .
The first term converges to 0 by Lemma 43 and H2-(ii) as $c(kh) = 0 for kh > T$. By H1 and
H3, the function t → $c(t)Λ(φt(x))Jφt(x)f(φt(x)) is continuous on the compact [0, T$] and thus is
bounded. Therefore, for any h ∈

(
0, h̄
)
,

sup
t∈[0,T$]

|$c(h bt/hc)Λ(φhbt/hc(x))Jφhbt/hc(x)f(φhbt/hc(x))|

6 sup
t∈R
|$c| sup

x∈Rd
|f(x)| sup

t∈[0,T$]
|Λ(φt(x))Jφt(x)| <∞ . (5.47)

Moreover, t 7→ $c(h bt/hc)Λ(φhbt/hc(x))Jφhbt/hc(x)f(φhbt/hc(x)) converges pointwise when h ↓ 0 to
t→ $c(t)Λ(φt(x))Jφt(x)f(φt(x)) by continuity, usingH1 andH3. The Lebesgue dominated convergence
theorem applies and the second term goes to 0 as h ↓ 0.

5.8.2 NEIS algorithm after [RV19]

Non Equilibrium Importance Sampling (NEIS) has been introduced in the pioneering work of [RV19].
NEIS relies on the flow of the ODE ẋt = b(xt) and the introduction of a set o ⊂ Rd. As in Section 5.8,
we assume H1 holds and denote by (φt)t∈R the flow of this ODE.

Define for x ∈ o, the exit times τ+(x) > 0 (resp. τ−(x) 6 0) satisfying

τ+(x) = inf{t > 0 : φt(x) /∈ o} , τ−(x) = inf{t 6 0 : φt(x) /∈ o} . (5.48)

The validity of NEIS relies on the following assumption.

H4. The average time of an orbit in o is finite, i.e.

Zτ =

∫
o
(τ+(x)− τ−(x))ρ(x)dx <∞ . (5.49)

Under H4, we can define the proposal distribution

ρT(x) = Z−1
τ

∫
o
1[τ−(x),τ+(x)](t)ρ(φt(x))Jφt(x)dt . (5.50)

Under H4, [RV19], Equation (8), derive the following estimator of ρ(f), closely related to (5.16), in the
case $ ≡ 1, on the restricted set o ⊂ Rd :

INEIS
N (f) =

1

N

N∑
i=1

∫ τ+(Xi)

τ−(Xi)
wt(X

i)f(φt(X
i))dt (5.51)

wt(x) =
ρ(φt(x))Jφt(x)∫ τ+(x)

τ−(x)
ρ(φt(x))Jφt(x)dt

. (5.52)

128 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

Note that in practice, in order for H4 to be verified, one typically requires that o be bounded, as
discussed in [RV19].

Following [RV19], consider a d-dimensional system with position q ∈ Rd, momentum p ∈ Rd and
Hamiltonian H(p, q) = (1/2)‖p‖2 + U(q) where U(q) is a potential assumed to be bounded from below.
Denote by V (E) the volume of the phase-space below some threshold energy E,

V (E) =

∫
1{H(p,q)6E}dpdq . (5.53)

To calculate (5.53), we set x = (p, q), define o = {x;H(x) 6 Emax} for some Emax <∞, and use the
dissipative Langevin dynamics with b(x) = (p,−∇U(q)− γp), i.e.

q̇ = p , ṗ = −∇U(q)− γp ,

for some friction coefficient γ > 0. With this choice, Jφt(x) = e−dγt. Taking ρ to be the uni-
form distribution on the (bounded) set o, write the estimator for E 6 Emax, V (E)/V (Emax) =∫
1{H(p,q)6E}ρ(p, q)dpdq, where ρ(p, q) = 1o(p, q)/V (Emax), we get

V (E)/V (Emax) =
1

N

N∑
i=1

∫ τ+(Xi)

τ−(Xi)
Jφt(Xi)1{H(φt(Xi))6E}dt∫ τ+(Xi)

τ−(Xi)
Jφt(Xi)dt

=
1

N

N∑
i=1

∫ τ+(Xi)

τE(Xi)
Jφt(Xi)dt∫ τ+(Xi)

τ−(Xi)
Jφt(Xi)dt

=
1

N

N∑
i=1

e−dγ(τE(Xi)−τ−(Xi)) , (5.54)

where τE(x) denotes the (possibly infinite) time for a trajectory initiated at x = (p, q) to reach the
energy E 6 Emax.

Finally, to estimate the normalizing constant, [RV19] discretize the energy levels {E0, . . . , EP } and
write their estimator as

ẐNEIS
X1:N =

1

N

N∑
i=1

P∑
`=1

e−dγ(τE` (Xi)−τ−(Xi))(E` − E`−1) , (5.55)

using an approximation of the identity

Z =

∫
o

∫ ∞
0
1{L(x)>L}ρ(x)dLdx =

∫ ∞
0

PX∼ρ(L(X) > L)dL ,

which is at the core of nested sampling [CR10].

5.8.3 NEO with exit times

Consider o ⊂ Rd and let T be a C1-diffeomorphism on Rd. We introduce here an estimator based
on the forward and backward orbits in o associated with T. Define the exit times τ+ : Rd → N and
τ− : Rd → N−, given, for all x ∈ Rd, by

τ+(x) = inf{k > 1 : Tk(x) 6∈ o} , (5.56)

τ−(x) = sup{k 6 −1 : Tk(x) 6∈ o} , (5.57)

with the convention inf ∅ = +∞ and sup ∅ = −∞, and set

I = {(x, k) ∈ o× Z : k ∈ [τ−(x) + 1 : τ+(x)− 1]} . (5.58)

For any k ∈ Z, define ρk : Rd → R+ by

ρk(x) = ρ(T−k(x))JT−k(x)1I(x,−k) . (5.59)

5.8. CONTINUOUS-TIME LIMIT OF NEO AND NEIS 129

The density ρk is the push-forward of 1I(x, k)ρ(x) by Tk, i.e. for any k ∈ Z and any bounded function
g : Rd → R, ∫

o
g(y)ρk(y)dy =

∫
o
g(Tk(x))1I(x, k)ρ(x)dx . (5.60)

Consider the following assumption:

H5. The nonnegative sequence ($k)k∈Z satisfies $0 > 0 and

Z$T =

∫
o

∑
k∈Z

$kρk(x)dx =

∫
o

∑
k∈Z

$kρ(Tk(x))JTk(x)1I(x, k)dx <∞ . (5.61)

Consider the pdf

ρT(x) =
1

Z$T

∑
k∈Z

$kρk(x) , (5.62)

where Z$T is the normalizing constant. This is a non-equilibrium distribution, since ρT is not invariant by
T in general. Using ρT as an importance distribution to obtain an unbiased estimator of

∫
f(x)ρ(x)dx

is feasible since as $0 > 0, supx∈o ρ(x)/ρT(x) 6 ZT/$0 <∞, hence∫
o
f(x)ρ(x)dx =

∫
o

(
f(x)

ρ(x)

ρT(x)

)
ρT(x)dx .

From (5.60), the right hand side can be computed using the following key result.

Theorem 45. For any f : Rd → R measurable bounded function, we have∫
o
f(x)ρ(x)dx =

∫
o

∑
k∈Z

f(Tk(x))wk(x)ρ(x)dx , (5.63)

where, for any x ∈ Rd and k ∈ Z,

wk(x) = $kρ−k(x)
/∑

j∈Z
$j+kρj(x) . (5.64)

Proof. Let f : Rd → R be a measurable bounded function. By (5.60), writing g ← fρ/ρT,∫
o
f(x)ρ(x)dx =

∫
o

(
f(x)

ρ(x)

ρT(x)

)
ρT(x)dx

=

∫
o

∑
k∈Z

(
f(Tk(x))

$kρ(Tk(x))1I(x, k)

Z$TρT(Tk(x))

)
ρ(x)dx .

We now need to prove:

$kρ(Tk(x))1I(x, k)

Z$TρT(Tk(x))
=

$kρ(Tk(x))1I(x, k)

1I(x, k)
∑

i∈Z$iρi(T
k(x))

=
$kρ−k(x)∑
j∈Z$j+kρj(x)

= wk(x) ,

with the convention 0/0 = 0. We thus need to show that for any x ∈ o, k ∈ Z,

1I(x, k)
∑
i∈Z

$iρi(T
k(x)) =

1I(x, k)

JTk(x)

∑
j∈Z

$j+kρj(x) .

Using the identity JT−i+k(x) = JT−i(T
k(x))JTk(x), we obtain

1I(x, k)
∑
i∈Z

$iρi(T
k(x)) =

∑
i∈Z

1I(x, k)$iρ(T−i(Tk(x)))JT−i(T
k(x))1I(T

k(x),−i)

=
1

JTk(x)

∑
i∈Z

1I(x, k)$iρ(T−i+k(x))JT−i+k(x)1I(T
k(x),−i)

=
1

JTk(x)

∑
j∈Z

$j+kρ(T−j(x))JT−j (x)1I(T
k(x),−j − k)1I(x, k)

130 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

Note that if (x, k) ∈ I, we have (x,−j) ∈ I if and only if (Tk(x),−j − k) ∈ I by definition of I (5.58).
The proof is concluded by noting that:

1I(T
k(x)),−j − k)1I(x, k) = 1I(x,−j)1I(x, k) .

5.9 Iterated SIR

Let us recall the principle of the Sampling Importance Resampling method (SIR; [Rub87; SG92]) whose
goal is to approximately sample from the target distribution π using samples drawn from a proposal
distribution ρ.

In SIR, a N -i.i.d. sample X1:N is first generated from the proposal distribution ρ. A sample X∗

is approximately drawn from the target π by choosing randomly a value in X1:N with probabilities
proportional to the importance weights {L(Xi)}Ni=1, where L(x) = π(x)/ρ(x). Note that the importance
weights are required to be known only up to a constant factor.

For SIR, as N →∞, the sample X∗ is asymptotically distributed according to π; see [SG92].
A subsequent algorithm is the iterated SIR (i-SIR) [ADH10]. Here, N is not necessarily large

(N > 2), the whole process of sampling a set of proposals, computing the importance weights, and
picking a candidate, is iterated. At the n-th step of i-SIR, the active set of N proposals X1:N

n and
the index In ∈ [N] of the conditioning proposal are kept. First i-SIR updates the active set by
setting XIn

n+1 = XIn
n (keep the conditioning proposal) and then draw independently X1:N\{In}

n+1 from
ρ. Then it selects the next proposal index In+1 ∈ [N] by sampling with probability proportional to
{w̃(Xi

n+1)}Ni=1. As shown in [ADH10], this algorithm defines a partially collapsed Gibbs sampler (PCG)
of the augmented distribution

π̄(x1:N , i) =
1

N
π(xi)

∏
j 6=i

ρ(xj) =
1

N
w̃(xi)

N∏
j=1

ρ(xj) .

The PCG sampler can be shown to be ergodic provided that ρ and π are continuous and ρ is positive
on the support of π. If in addition the importance weights are bounded, the Gibbs sampler can be
shown to be uniformly geometrically ergodic [LDM15; ALV+18]. It follows that the distribution of the
conditioning proposal X∗n = XIn

n converges to π as the iteration index n goes to infinity. Indeed, for
any integrable function f on Rd, with (X1:N , I) ∼ π̄,

E[f(XI)] =

∫ N∑
i=1

f(xi)π̄(x1:N , i)dx1:N = N−1
N∑
i=1

∫
f(xi)π(xi)dxi =

∫
f(x)π(x)dx .

When the state space dimension d increases, designing a proposal distribution ρ guaranteeing proper
mixing properties becomes more and more difficult. A way to circumvent this problem is to use
dependent proposals, allowing in particular local moves around the conditioning orbit. To implement
this idea, for each i ∈ [N], we define a proposal transition, ri(xi;x1:N\{i}) which defines the the
conditional distribution of X1:N\{i} given Xi = xi. The key property validating i-SIR with dependent
proposals is that all one-dimensional marginal distributions are equal to ρ, which requires that for each
i, j ∈ [N],

ρ(xi)ri(x
i;x1:N\{i}) = ρ(xj)rj(x

j ;x1:N\{j}) (5.65)

The (unconditional) joint distribution of the particles is therefore defined as

ρN
(
x1:N

)
= ρ(x1)r1(x1;x1:N\{1}) . (5.66)

The resulting modification of the i-SIR algorithm is straightforward: X1:N\{In} is sampled jointly from
the conditional distribution rIn(XIn

n , ·) rather than independently from ρ.

5.10. ADDITIONAL EXPERIMENTS 131

5.10 Additional Experiments

5.10.1 Normalizing constant estimation

We consider here the problem of the estimation of the normalizing constant of Cauchy mixtures. The
Cauchy distribution with scale σ has a pdf defined by Cauchy(x;µ, σ) = [πσ(1 + {(x− µ)/σ}2]−1. The
target distribution is a product of mixtures of two Cauchy distributions,

π(x) =

n∏
i=1

1

2
[Cauchy (xi;µ, σ) + Cauchy (xi;−µ, σ)] , µ = 5, σ = 1 .

NEO-IS is compared with IS estimator using the same proposal ρ. We also compare NEO-IS to Neural
IS [Mül+19] with a Cauchy as base distribution.

NEO IS NIS0

5

10

15

20

25

30

NEO IS NIS0

5

10

15

20

25

30

Figure 5.5: Boxplots of 500 independent estimations of the normalizing constant of the Cauchy mixture
in dimension d = 10, 15 (top, bottom). The true value is given by the red line. The figure displays the
median (solid lines), the interquartile range, and the mean (dashed lines) over the 500 runs

Finally, we compare NEO-IS with NEIS4. We consider here MG25 in dimension 5 and 10, where all
the covariances of the Gaussian distributions are diagonal and equal to 0.005 Id. NEIS and NEO-IS are
run for the same computational time. We add an IS scheme as a baseline for comparison. All algorithms
(NEO-IS, NEIS, IS) are run for 7.20s and 11.30s wall clock time respectively for d = 5 and d = 10.
For NEO-IS, we use a conformal transform with h = 0.1, K = 10 and γ = 1. For NEIS, we choose
γ = 1 and consider a stepsize h = 10−4 corresponding to an optimal trade-off between the discretization
bias inherent to NEISand its computational budget. We can observe that NEO-IS always outperforms
NEIS, which suffers from a non-negligeable bias if the stepsize h is not chosen small enough.

NEO IS NEIS0

5

10

15

20

25

30

NEO IS NEIS0

5

10

15

20

25

30

Figure 5.6: NEO v. NEIS. 25 GM with σ2 = 0.005, d = 5. 500 runs each.

4The code from [RV19] we run is available at https://gitlab.com/rotskoff/trajectory_estimators/-/tree/
master.

https://gitlab.com/rotskoff/trajectory_estimators/-/tree/master
https://gitlab.com/rotskoff/trajectory_estimators/-/tree/master

132 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

Figure 5.7: Forward orbits of NEO-MCMC.

5.10.2 Gibbs inpainting

We display here additional results for the Gibbs inpainting experiment presented in Section 5.5. We
emphasize that the starting images are chosen at random in the test set.

5.11 NEO and VAEs

Denote by pθ(x, z) the joint distribution of the observation z ∈ Rp and the latent variable x ∈ Rd. The
marginal likelihood is given, for z ∈ Rp by pθ(z) =

∫
pθ(x, z)dx. Given a training set D = {zi}Mi=1, the

objective is to estimate θ by maximizing the likelihood, i.e. maximizing log pθ(D) =
∑M

i=1 log pθ(zi).
We show two experiments in the following, first the evaluation of independently trained VAEs, and
then the derivation and learning of a VAE based on NEO, and NEO-VAE.

5.11.1 Log-likelihood estimation

We present here first the evaluation of the log-likelihood of a trained VAE on the dynamically binarized
MNIST dataset. The models we compare share the same architecture: the inference network qφ is
given by a convolutional network with 2 convolutional layers and one linear layer, which outputs the
parameters µφ(x), σφ(x) ∈ Rd of a factorized Gaussian distribution, while the generative model pθ(·|z) is
given by another symmetrical convolutional network gθ. This outputs the parameters for the factorized
Bernoulli distribution (for MNIST dataset), that is

pθ(z|x) =
N∏
i=1

Ber
(
z(i)|

(
gθ(x)

)(i))
.

We here follow the experimental setting of [Wu+16]. Given a test set T = {zi}MTi=1 , we estimate∑MT
i=1 log pθ∗(zi). We also estimate similarly the log-likelihood of an Importance Weighted Auto

Encoder (IWAE) [BGS15]. Following [Wu+16], we compare IS, AIS, and NEO-IS. As previously, AIS,
IS, and NEO-IS are given a similar computational budget, choosing here K = 12, N = 5 · 103. For
NEO, we choose γ = 1. and h = 0.2. Similarly, the stepsize of HMC transitions in AIS is h = 0.1 in
order to achieve an acceptance ratio of around 0.6 in the HMC transitions. We report in Table 5.1 the
log-likelihood computed on the test set for VAE, IWAE with latent dimension in {16, 32}. For the same
computational budget, NEO-IS yields consistently better values for the estimation of the log-likelihood
of the VAE.

5.11. NEO AND VAES 133

Figure 5.8: Additional examples for the Gibbs inpainting task for CelebA dataset. From top to bottom:
i-SIR, HMC and NEO-MCMC: From left to right, original image, blurred image to reconstruct, and
output every 5 iterations of the Markov chain.

Model VAE, d = 32 VAE, d = 16 IWAE, d = 32 IWAE, d = 16

IS -90.17 -90.44 -88.76 -90.13
AIS -89.67 -89.97 -88.30 -89.61

NEO-IS -88.81 -89.17 -87.46 -88.99

Table 5.1: Evaluation of the log-likelihood (normalizing constant) of different Variational Auto Encoders.

134 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

5.11.2 Definition of a NEO-VAE

Variational inference (VI) provides us with a tool to simultaneously approximate the intractable posterior
pθ(x|z) and maximize the marginal likelihood pθ(D) in the parameter θ. This is achieved by introducing
a parametric family {qφ(x|z), φ ∈ Φ} to approximate the posterior pθ(x|z) and maximizing the Evidence
Lower Bound (ELBO) (see [KW19]) LELBO(D, θ, φ) =

∑M
i=1 LELBO(zi, θ, φ) where

LELBO(z, θ, φ) =

∫
log

(
pθ(x, z)

qφ(x | z)

)
qφ(x | z)dx (5.67)

= log pθ(z)−KL(qφ(· | z)‖pθ(· | z)) ,

and KL is the Kullback–Leibler divergence. In the sequel, we set ρ(x) = qφ(x | z) and L(x) =
pθ(x, z)/qφ(x | z). In such a case, π(x) = ρ(x)L(x)/Z = pθ(x | z) and Z = pθ(z) (in these notations, the
dependence in the observation z is implicit).

We follow the the auxiliary variational inference framework (AVI) provided by [AB04]. We consider
a joint distribution p̄θ(x, u, z) which is such that pθ(z) =

∫
pθ(x, u, z)dxdu where u ∈ U is an auxiliary

variable (the auxiliary variable can both have discrete and continuous components; when u has discrete
components the integrals should be replaced by a sum). Then as the usual VI approach, we consider a
parametric family {q̄φ(x, u|z), φ ∈ Φ}. Introducing auxiliary variables loses the tractability of (5.67)
but they allow for their own ELBO as suggested in [AB04; Law+19] by minimizing

KL(q̄φ(· | z)‖p̄θ(· | z)) =

∫
q̄φ(x, u|z) log

(
p̄θ(x, u, z)

q̄φ(x, u|z)

)
dxdu . (5.68)

The auxiliary variable u is naturally associated with the extended target p̄ defined similar to Remark 34,

p̄N ([x, x1:N\{i}], i) = π̌(x1:N , i) =
Ẑ$x
NZ

ρN (x1:N) (5.69)

with (x, u) = ([x, x1:N\{i}], i), a shorthand notation for a N -tuple x1:N with xi = x, and, with ri defined
in (5.15),

ρN (x1:N) = ρ(x1)r1(x1, x2:N) = ρ(xj)rj(x
j , x1:N\{j}) , j ∈ {1, . . . , N} , (5.70)

generally for Markov transitions {rj}j∈[N]. We might write simply in the following

ρN (x1:N) =
N∏
i=1

ρ(xi) .

An extended proposal playing the role of q̄φ(x, u|z) is derived from the NEO-MCMC sampler, i.e.

q̄N ([x, x1:N\{i}], i) =
Ẑ$x

N Ẑ$
x1:N

ρN (x1:N) . (5.71)

where Ẑ$
x1:N is the NEO estimator (5.4) of the normalizing constant. Note that, by construction,

N∑
i=1

q̄N (x1:N , i) = ρN (x1:N) (5.72)

showing that this joint proposal can be sampled by drawing the proposals x1:N ∼ ρN , then sampling
the path index i ∈ [N] with probability proportional to (Ẑ$

xi
)Ni=1 (with Ẑ$x defined in (5.4)). The ratio

of (5.69) over (5.71) is
p̄N (x1:N , i)

/
q̄N (x1:N , i) = Ẑ$x1:N

/
Z . (5.73)

5.11. NEO AND VAES 135

Table 5.2: Negative Log Likelihood estimates for VAE models for different latent space dimensions.
d = 4 d = 8 d = 16 d = 50

model IS NEO IS NEO IS NEO IS NEO

VAE 115.01 113.49 97.96 97.64 90.52 90.42 88.22 88.36
IWAE, N = 5 113.33 111.83 97.19 96.61 89.34 89.05 87.49 87.27
IWAE, N = 30 111.92 110.36 96.81 95.94 88.99 88.64 86.97 86.93

NEO VAE, K = 3 109.14 107.47 94.50 94.26 89.03 88.92 88.14 88.16
NEO VAE, K = 10 110.02 107.90 94.63 94.22 89.71 88.68 88.25 86.95

Thus, we write the augmented ELBO (5.68)

LNEO =

∫
ρN (x1:N) log Ẑ$x1:Ndx1:N = log Z−KL(q̄N |p̄N) , (5.74)

where we have used (5.72) and that the ratio p̄N (x1:N , i)
/
q̄N (x1:N , i) does not depend on the path index

i. When $k = δk,0, where δi,j is the Kronecker symbol, and ρN (x1:N) =
∏N
j=1 ρ(xj), we exactly retrieve

the Importance Weighted AutoEncoder (IWAE); see e.g. [BGS15] and in particular the interpretation
in [CMD17].

Choosing the conformal Hamiltonian introduced in Section 5.2 allows for a family of invertible flows
that depends on the parameter θ which itself is directly linked to the target distribution. Table 5.2
displays the estimated NLL of all models provided by IS and the NEO method. It is interesting to note
here again that NEO improves the training of the VAE when the dimension of the latent space is small
to moderate.

136 CHAPTER 5. NEO: NON EQUILIBRIUM SAMPLING

Chapter 6

Ex2MCMC: Sampling through
Exploration Exploitation

Evgeny Lagutin1, Daniil Selikhanovych1, Achille Thin2, Sergey Samsonov3,
Alexey Naumov3, Denis Belomestny3, Maxim Panov3, Eric Moulines2

Abstract

We develop an Explore-Exploit Markov chain Monte Carlo algorithm (Ex2MCMC) that combines
multiple global proposals and local moves. The proposed method is massively parallelizeable and
extremely computationally efficient. We prove V -uniform geometric ergodicity of Ex2MCMC under
realistic conditions, and compute explicit bounds on the mixing rate showing the improvement brought
by the multiple global moves. We show that Ex2MCMC allows fine-tuning of exploitation (local
moves) and exploration (global moves) via a novel approach to proposing dependent global moves.
Finally, we develop an adaptive scheme, FlEx2MCMC, that learns the distribution of global moves
using normalizing flows. We illustrate the efficiency of Ex2MCMC and its adaptive versions on many
classical sampling benchmarks. We also show that these algorithms improve the quality of sampling
GANs as energy-based models.

6.1 Introduction

Suppose one is interested in sampling from a probability distribution Π that is known up to a scaling
factor. A Markov chain Monte Carlo algorithm (MCMC) consists of simulating a realization of a
time-homogeneous Markov chain {Yk, k ∈ N} with the Markov kernel K, with the property that the
distribution of Yn becomes arbitrarily close to Π as n→∞, irrespective of the distribution of Y0. A
property that the kernel K must satisfy is that it leaves the distribution Π invariant, i.e., Π should be a
fixed point of the Markov kernel. Instead, one can consider the stronger detailed balance condition or
reversibility, a property that is easier to handle due to its local character. In particular, it leads to the
famous Metropolis-Hastings (MH) kernel, the cornerstone of MCMC simulations, and a number of its
successful variants.

To improve the available samplers, a number of authors have tried to optimize the usual MH
algorithm by generating a pool of proposals at each iteration, e.g. Multiple-Try Metropolis algorithm
(MTM; [LLW00; CL07b]). The use of multiple proposals at each iteration, which can be efficiently
implemented in parallel computing architectures, allows to increase the local search region without
decreasing the acceptance ratio, which leads to an improvement in the mixing rate. This property

1CDISE, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
2Centre de Mathématiques Appliquées, UMR 7641, Ecole polytechnique, France
3CS Departement, HSE University, Russian Federation

137

138 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

has been theoretically supported by results on the high-dimensional scaling limit (see [BDM12]). At
the same time, MCMC algorithms based on multiple independent proposals suffer from the fact that
their acceptance rate decreases dramatically in large dimension. In this work, we follow the idea of
generating multiple proposals for MH-based MCMC but give a new prospective on it and provide a
computationally attractive alternative to MTM.

Contributions The main contributions of the paper are as follows:
• We propose an Explore-Exploit MCMC algorithm (Ex2MCMC), that retains most of the desirable

properties of MTM, in particular, high degree of parallelization and improved mixing rate, while
reducing the computational cost. We prove V -uniform geometric convergence of Ex2MCMC and
evaluate its mixing rate;

• We propose an original method to construct dependent proposals for Ex2MCMC , which allows
to fine-tune the exploration-exploitation trade-off. Moreover, we propose an adaptive algorithm
to learn the proposal distribution (FlEx2MCMC);

• We provide numerical evaluation of Ex2MCMC and FlEx2MCMC on various sampling problems,
including sampling from GANs as energy-based model. The results clearly show the benefits of
the proposed approaches compared to standard MCMC methods.

6.2 Ex2MCMC

6.2.1 From Importance Sampling to Sampling Importance Resampling

Importance Sampling (IS) is widely used for estimating integrals of the function f w.r.t. of a target
distribution Π on a state-space (X,X), known up to a normalizing factor ZΠ, Π(dx) = Π̃(dx)/ZΠ; see,
e.g. [RC13b]. IS consists of weighting samples from a proposal Λ. Assume that Π̃(dx) = w̃(x)Λ(dx),
and that the importance weight function w̃ is positive, i.e. w̃(x) > 0 for all x ∈ X. We often assume
that Π̃ (hence, Π) and Λ have positive densities w.r.t. a common dominating measure, denoted by
π̃, π, and λ, respectively. If this is the case, w̃(x) = π̃(x)/λ(x). The self-normalized importance
sampling (SNIS) estimator of π(f) is then given by Π̂N (f) =

∑N
i=1 ω

i
Nf(Xi), where X1:N ∼ Λ and

ωiN = w̃(Xi)/
∑N

j=1 w̃(Xj), i ∈ {1, . . . , N} are the self-normalized importance weights.
Provided that Λ(w̃2) =

∫
w̃(x)2Λ(dx) <∞, the bias and the mean square error MSE of the SNIS

estimator are inversely proportional to N .
Although importance sampling is primarily intended to approximate integrals of the form Π(f),

it can also be used to (approximately) sample from Π. The latter can be achieved by the Sampling
Importance Resampling (SIR; [Rub87]). SIR is a two-stage procedure. In the first stage, an i.i.d. sample
X1:N = X1, . . . , XN is sampled from Λ and the importance weights ω1:N = ω1

N , . . . , ω
N
N are computed.

In a second step, a sample of size M , Y 1:M is obtained by sampling with replacement with the weights
ω1:N , denoted Cat(ω1:N). In other words, given a N -iid sample X1:N from Λ, SIR draws samples from
the empirical distribution Π̂(dx) =

∑N
i=1 ω

i
NδXi(dx) where δy(dx) denotes the Dirac mass at y. As

N →∞, a sample Y 1, . . . , YM ∼ Π̂ will be distributed according to Π; see [SG92; SBH03]. The main
issue of SIR method is that it is only asymptotically valid.

6.2.2 From SIR to iterated Sampling Importance Resampling (i-SIR)

A closely related algorithm is the iterated SIR (i-SIR), a term coined in [ADH10] and later investigated
more deeply in [ALV+18]. For i-SIR, the sample size N is not necessarily large, but the process of
sampling from the proposal, computing the normalized importance weights and picking a candidate
is iterated. The j-th i-SIR iteration is defined as follows. Given the current state Yj ∈ X, (i)
Set X1

j+1 = Yj and draw X2:N
j+1 independently from the proposal distribution Λ. (ii) Compute the

normalized importance weights ωiN,j+1 = w̃(Xi
j+1)/

∑N
`=1 w̃(X`

j+1), i ∈ {1, . . . , N}. (iii) Draw Yj+1

from the proposal set X1:N
j+1, choosing X

i
j+1 with probability ωiN,j+1. The Markov kernel associated

6.2. EX2MCMC 139

with i-SIR is given, for (x,A) ∈ X×X , by

PN (x,A) =

∫
δx(dx1)

N∑
i=1

w̃(xi)∑N
j=1 w̃(xj)

1A(xi)
N∏
j=2

Λ(dxj). (6.1)

Lemma 46. PN admits Π as its invariant distribution.

This result is proven in [ALV+18] (see also Section 6.7.1). To go further, we now establish
the V -geometric convergence for i-SIR samples to Π. To state the results, we introduce, for a
function V (x) : X 7→ [1,∞), the V -norm of two probability measures ξ and ξ′ on (X,X), ‖ξ −
ξ′‖V

:=
sup|f(x)|6V (x)|ξ(f) − ξ′(f)|. If V ≡ 1, ‖ · ‖1 corresponds to the total variation distance (rather

denoted ‖ · ‖TV).

Definition 47 (Geometric Ergodicity). A Markov kernel Q with invariant probability measure Π is
V -geometrically ergodic if there exist constants ρ ∈ (0, 1) and M <∞ such that, for all k ∈ N,

‖Qk(x, ·)−Π‖V 6M V (x)ρk for all x ∈ X . (6.2)

In particular, geometric ergodicity results ensure that the distribution of the n-th step of a Markov
chain converges geometrically fast to the invariant probability in V -norm, for all starting points x ∈ X.
Here the dependence on the initial state x appears on the right-hand side only in V (x). Uniform
geometric ergodicity of i-SIR is established in [ALV+18, Theorem 1] under the assumption that the
normalized importance weight function w (that is, Π(dx) = w(x)Λ(dx)) is uniformly bounded.

This result is extended below for arbitrary V -norm satisfying Π(V) =
∫
V (x)Π(dx) <∞ under the

following condition.

H6. For any x ∈ X, w(x) 6 L, with L <∞ .

The result is up to our best knowledge new.

Theorem 48. Assume H6. Set εN = N−1
2L+N−2 and κN = 1− εN . Then,

(i) For any x ∈ X and k ∈ N, ‖PkN (x, ·)−Π‖TV 6 κkN
Let V : X→ [1,∞) be any measurable function such that Π(V) <∞ and Λ(V) <∞. Then,
(ii) For all x ∈ X and k ∈ N, ‖PkN (x, ·)−Π‖V 6 cN{Π(V) + V (x)}κ̃kN , where the constants cN , κ̃N

are given in (6.53).

The proof is postponed to Section 6.7.2. We show that κ̃N = O(N−1/3) which can be sharpen
but essentially means that the geometric convergence rate decreases to 0 with the reciprocal of the
number of proposals N . H6 is restrictive, and even if it is satisfied, in most cases the upper bound
grows exponentially with dimension (typically, if Πd =

∏d
i=1 Π, Λd =

∏d
i=1 Λ, then Ld = Ld). For this

reason, IS is rarely used in high-dimensional space unless the proposal distribution is learned [Aga+17],
which is the key point of Adaptive IS methods; see Section 6.3. A natural idea is to couple the i-SIR
method with some local MCMC steps to define a sampler that remains V -uniformly geometrically
ergodic even if H6 is not satisfied. After each step of i-SIR, it suffices to apply a local MCMC kernel R
(called rejuvenation kernel) that has Π as invariant distribution. We call this algorithm the Ex2MCMC
algorithm because it combines steps of exploration by i-SIR and steps of exploitation by the local
MCMC moves. The resulting Ex2MCMC algorithm is given by Algorithm 5.

We denote by KN the associated Markov kernel (see Supplementary Material). Consider the following
assumption

H7. (i) R has Π as its unique invariant distribution; (ii) There exists a function V : X→ [1,∞), such
that for all d > dR > 1 there exist λR,d ∈ [0, 1), bR,d < ∞, such that RV 6 λR,dV + bR,d1Vd, where
Vd = {x : V (x) 6 d}; (iii) For all d > dR, supx∈Vd w(x) < w∞,d <∞.

140 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

1 Procedure Ex2MCMC (Yj ,Λ,R):
Input :Previous sample Yj ;

proposal distribution Λ;
rejuvenation kernel R;

Output :New sample Yj+1;
2 Set X1

j+1 = Yj , draw X2:N
j+1 ∼ Λ;

3 for i ∈ [N] do
4 compute the normalized weights ωi,j+1 = w̃(Xi

j+1)/
∑N

k=1 w̃(Xk
j+1);

5 end
6 Set Ij+1 = Cat(ω1,j+1, . . . , ωN,j+1);
7 Draw Yj+1 ∼ R(X

Ij+1

j+1 , ·).
8 end

Algorithm 1: Single stage of Ex2MCMC algorithm with independent proposals

(ii) states that the rejuvenation kernel satisfies a Foster-Lyapunov drift condition for V : it is
satisfied by very many MCMC kernels, typically under super-exponential tail conditions for the target
distribution; see [RR04] and [Dou+18, Chapter 2] and the references therein. (iii) states that the
importance weights are upper bounded on level sets. This is a mild condition: if X = Rd, and V is
norm-like, then the level sets Vd are compact and w̃ is bounded as soon as π and λ are positive and
continuous. We emphasize that we do not need to identify the small sets of the rejuvenation kernel.
We can now present the main theoretical result of this paper.

Theorem 49. Assume H7. Then, for all x ∈ X and k ∈ N,

‖Kk
N (x, ·)−Π‖V 6 cN,R{Π(V) + V (x)}λr[N,R]k , (6.3)

where the constant cN,R, λr[N,R] are given in (6.74).

The proof is postponed to Section 6.7.3. The main steps are (i) establishing that the level sets Vd are
small for the Markov kernel KN (with a constant which depends only on N and w∞,d ; see Lemma 52);
(ii) checking that KN also satisfies a Foster-Lyapunov with function V with constant depending only
on λR,d ∈ [0, 1), bR,d, and N ; see Lemma 54. Note that λr[N,R] typically decreases when the number
of proposals N grows. In many situations, the mixing rate λr[N,R] is significantly better than the
corresponding mixing rate of R, provided that N is large enough. This is illustrated in Section 6.8 with
the Metropolis Adjusted Langevin Algorithm (MALA) kernel (see e.g. [Bes94a; RT96]).

6.2.3 Dependent proposals for i-SIR and Ex2MCMC algorithms

We now extend Ex2MCMC by relaxing the assumptions that the proposals at each stage are independent.
The possibility of using dependent particles (and in particular local moves around the conditioning
point) allows Ex2MCMC algorithm to fine-tune Exploration v.s. Exploitation. Denote by Λ̄N

(
dx1:N

)
the joint distributions of the proposed particles. The key property to satisfy is that the marginal
distribution of the proposed particles is Λ, that is for each i ∈ [N] = {1, . . . , N} there exists a Markov
kernel denoted Qi satisfying

Λ(dxi)Qi

(
xi,dx1:N\{i}) = Λ̄N

(
dx1:N

)
. (6.4)

The Markov kernel Qi(X
i, ·) defines the conditional distribution of the particles X1:N\{i} given

the “conditioning” particle Xi. In the simple i-SIR case, Qi(x
i,dx1:N\{i}) =

∏
jnei Λ(dxj) so that

Λ̄N
(
dx1:N

)
=
∏N
i=1 Λ(dxi). Using these conditional distributions, we now adapt Algorithm 5 by

changing line 1 by
1. Draw Uj+1 from the uniform distribution in [N] and set XUj+1

j+1 = Yj ;

6.2. EX2MCMC 141

100 200 300
dim

0

1

Va
ria

nc
e

100 200 300
dim

0.1

0.0

0.1

M
ea

n

100 200 300
dim

0.00

0.05

0.10

ES
S

i-SIR
Ex2MCMC

Figure 6.1: Sampling from N (0, Idd) with the proposal N (0, 2 Idd). The rightmost plot illustrates the
number of rejections rapidly growing for vanilla i-SIR algorithm (see Section 6.11.1 for the definition of
ESS). The correlated proposals in Ex2MCMC help to achieve efficient sampling even in high dimensions.
We display confidence intervals for i-SIR and Ex2MCMC obtained from 20 independent runs as blue
and red regions, respectively.

2. Draw X
1:N\{Uj+1}
j+1 ∼ QUj+1(X

Uj+1

j+1 , ·).

Note that contrary to the independent case we randomize the index of the conditioning variable, because
we have not assumed that the joint proposal Λ̄N is exchangeable. We present below some methods
of constructing proposals verifying (6.4). We denote by CN the corresponding Markov kernel. The
following result establishes the validity of the proposed algorithm, which holds virtually without any
assumption.

Theorem 50. For any N > 2, the Markov kernel CN admits Π as its unique invariant distribution.

We now describe a general method for constructing joint proposals Λ̄N with the proper marginal
Λ. The main motivation for this construction is to seize the opportunity of massive parallelization
of proposal sampling, which is a key to efficient implementation. The basic idea is to introduce a
hierarchical latent variable model that allows flexible control of the dependency between proposals while
preserving the desired symmetry property. Denote by (E, E) the latent space, Ξ the latent distribution
and R, a Markov kernel on E×X , the conditional distribution of the proposal given the latent variable.
We assume that

ΞR(dx) =

∫
E

Ξ(dξ)R(ξ,dx) = Λ(dx). (6.5)

We associate to each proposal Xi a latent variable ξi, i ∈ [N]; R(ξi, ·) therefore defines the conditional
distribution of Xi given the latent variable ξi. Denote by Ξ̄N the joint distribution of ξ1:N . It is
assumed that the marginal distribution of any ξi is Ξ, and we denote by Si the Markov kernel satisfying
for any i ∈ [N],

Ξ̄N
(
dξ1:N

)
= Ξ(dξi) Si

(
ξi, dξ1:N\{i}) . (6.6)

Finally, we set

Λ̄N
(
dx1:N

)
=

∫
EN

Ξ̄N
(
dξ1:N

) N∏
i=1

R(ξi, dxi) . (6.7)

This is the distribution of N random variables X1:N taking values in X. The variables {Xi}Ni=1 are
conditionally independent with respect to the latent variables ξ1:N and are marginally distributed
according to Λ thanks to (6.5). This helps to show that the distribution defined by (6.7) satisfies (6.4)
with the properly selected kernel Qi

(
xi,dx1:N\{i}). Define by R̆ the reverse Markov kernel on X× E

satisfying
Ξ(dξ)R(ξ,dx) = Λ(dx)R̆(x,dξ) . (6.8)

The Markov kernel R̆ can be computed using the Bayes rule. This is transparent when the Markov kernel
R has density, i.e. there exists a function r and a measure µ on X such that R(ξ,dx) = r(x | ξ)µ(dx).
In this case r is the conditional p.d.f. of the proposal X given the latent variable ξ. In such case,

142 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

Figure 6.2: Graphical model for the proposals X1:N .

Λ(dx) = λ(x)µ(dx), with λ(x) =
∫
E

Ξ(dξ)r(x | ξ) which is the marginal p.d.f. of the proposal X. The
reversal condition in this case writes: Ξ(dξ)R(ξ,dx) = r(x | ξ)Ξ(dξ)µ(dx) = r(x | ξ)/λ(x)Ξ(dξ)Λ(dx).
This shows that the reverse kernel has a density w.r.t. Ξ given by r̆(ξ | x) = r(x | ξ)/λ(x). Using (6.8),
it is easily seen that for all i ∈ [N]

Qi

(
xi, dx1:N\{i}) =

=

∫
EN

R̆(xi, dξi)Si
(
ξi, dξ1:N\{i})∏

j 6=i
R(ξj , dxj) .

(6.9)

We can then simply update Algorithm 5 by replacing line 1 by the following three steps:
1. Draw Uj+1 from the uniform distribution in [N] and set XUj+1

j+1 = Yj , ξ
Uj+1

j+1 ∼ R̆(X
Uj+1

j+1 , ·),
2. Draw latents ξ1:N\{Uj+1}

j+1 ∼ SUj+1(ξ
Uj+1

j+1 , ·),
3. Draw proposals Xi

j+1 ∼ R(ξij+1, ·), i ∈ [N] \ {Uj+1}.
Below we provide an example of Ex2MCMC algorithm with dependent proposal distributions.

6.2.4 Dependent Gaussian proposals

Let us denote by g(x;µ,Γ) the Gaussian p.d.f. with mean µ ∈ Rd and covariance Γ ∈ Rd×d. Assume
that the proposal distribution is Gaussian, i.e. λ(x) = g(x; 0, σ2

Λ Idd). As we will see below, this
example is important because it is often used when sampling generative models. We give a step-by-
step construction that closely follows the presentation given above. We first define the latent space
E = Rd × R, the latent variable ξ = (η, α). We assume that the latent distribution is a product
Ξ = Λ ⊗ ν, with ν(dα) = εδa(dα) + (1 − ε)δ0(dα), with ε ∈ [0, 1] and a ∈ [0, 1]. Expressed with
random variables, X = αη + σ[α]W , σ[α] = σΛ(1− α2)1/2 where (α,W) are two independent random
variables, α takes two values a and 0 with probability and P(α = a) = ε, W ∼ N(0, σ2

Λ Idd). Under
these assumptions, the conditional p.d.f of the proposal sample x given the latent variable (η, α) is
given by r

(
x | (η, α)

)
= g(x;αη, σ2[α] Idd). The reverse kernel R̆ defined by (6.8) can be written as

R̆
(
x, d(α, η)

)
= εg(η; ax, σ2[a] Idd)δa(dα)dη+ (1− ε)g(η; 0, σ2

Λ Idd)δ0(dα). We now specify the joint law
of the latent variables to be, for i ∈ [N],

Si
(
ξi, dξ1:N\{i}) =

∏
j 6=i

δηi(dη
j)ν(dαj) , (6.10)

that is, the latent variables ηi, i ∈ [N] are all equal, whereas that the random variables α1:N\{i} are
conditionally independent with the same distributions ν. The graphical model for the resulting latent
variables approach for dependent proposals generation is given in Figure 6.2. Now we can specify the
modification of Algorithm 5 in this case by substituting its line 1 by Algorithm 6.

The value ε controls the exploration-exploitation ratio of Ex2MCMC. When ε = 0 we recover the
independent i-SIR, and for ε = 1 i-SIR is bound only to local proposals. In our experiments, we find
in practice that a value ε ∈ (0, 1) is relevant. To illustrate the need for introducing dependencies
between propositions, consider the toy problem of sampling a high-dimensional Gaussian distribution:
π(x) = g(x; 0, Idd) and λ(x) = g(x; 0, 2 Idd). This is admittedly an artificial problem, but it provides
a diagnosis of why i-SIR fails in high dimensions and why Ex2MCMC (here with ε = 1 and without
rejuvenation steps at all) works well (see Figure 6.1). Details of the experiment can be found in
Supplementary Material, Section 6.11.4.

6.3. ADAPTIVE EX2MCMC ALGORITHM 143

Input : Sample Yj from previous iteration
Output : Set of proposals for the current iteration X1:N

j+1

1 Draw Uj+1 ∼ Unif([N]) and set XUj+1

j+1 = Yj

2 Draw α
Uj+1

j+1 ∼ ν and ηj+1 ∼ N(α
Uj+1

j+1 X
Uj+1

j+1 , σ2[α
Uj+1

j+1] Idd
)

3 For i ∈ [N] \ {Uj+1}, draw W i
j+1 ∼ N(0, Idd), αij+1 ∼ ν, and set

Xi
j+1 = αij+1ηj+1 + σ[αij+1]W i

j+1.
Algorithm 2: Ex2MCMC for Gaussian proposal

Input :weights θj , batch Yj [1 : K]
Output : new weights θj+1, batch Yj+1[1 : K]

1 for k ∈ [K] do
2 Yj+1[k] = Ex2MCMC (Yj [k], Tθj#Λ,R)

3 end
4 Draw Z̄[1 : K] ∼ Λ.
5 Update θj+1 = θj − γ∇̂L(Yj+1, Z̄, θj).
Algorithm 3: Single stage of FlEx2MCMC. Steps of Ex2MCMC are done in parallel with common
values of proposal parameters θj . Step 4 updates the parameters using the gradient estimate
obtained from all the chains.

6.2.5 Related Work

i-SIR has been proposed by [ADH10] and further developed in [ALV+18]; see also [Lee+10; Lee11].
[ALV+18] highlights the links of i-SIR with particle Gibbs methods, the main difference being that
the proposal distribution is defined on the “path space” used in sequential Monte Carlo methods; see
also [Dou+15]. Using this analogy, the rejuvenation kernel plays a role similar to the backward sampling
kernel in the particle Gibbs with Backward Sampling (PGBS; [LS13]). The idea of making the moves
dependent of the conditioning particle has been suggested in the PGBS context by [SN18].

Ex2MCMC algorithm can also be seen as a collapsed version of the Gibbs sampler proposed in [Tje04].
The algorithm also has similarities with the Multiple Tries Metropolis (MTM) algorithm, but the
Ex2MCMC is both computationally simpler and displays more favorable mixing properties. In the MTM
algorithm, N i.i.d.trial proposals {Xi

j+1}Ni=1 are drawn from a kernel T(y, ·) in each iteration: this is
similar to Ex2MCMC sampling step, except that we do not require Qj

(
xj , dx1:N\{j}) =

∏N
j=1 T(xj , dxj).

In a second step, a sample Y ∗j+1 is selected with probability proportional to the weights (the exact
expression of the importance weights differs from ours, but this does not change the complexity of the
algorithm). In a third step (see [LLW00], section 2), N − 1 i.i.d. proposals are drawn from the kernel
T(Y ∗j+1, ·) and the move is assumed to be Yj+1 = Y ∗j+1 with a generalized M-H ratio, see [LLW00], eq. 3.
This step is bypassed in Ex2MCMC, which reduces the computational complexity by a factor of 2.

6.3 Adaptive Ex2MCMC algorithm

As mentioned earlier, the success of IS methods lies in an appropriate choice of proposal distribution. A
classical approach is to define families of proposal distributions {λθ} parameterized by some parameters
θ chosen to match the target distribution π̃. Such families can be obtained using a sequence of invertible
transformations called normalizing flow [Pap+19]. Let T : X→ X be a C1 diffeomorphism. We denote
the push-forward of measure Λ under T , that is, the distribution of Y = T (X) with X ∼ λ, by T#Λ.
The corresponding push-forward density is given by λT (y) = λ

(
T−1(y)

)
JT−1(y), where JT denotes the

Jacobian determinant of T ; see [RM15b; KPB20; Pap+19] and references therein. The parameterized
family of diffeomorphisms {Tθ} defines a family of distributions {λTθ}, denoted for conciseness {λθ}.
The parameter θ is then chosen to minimize a discrepancy between the target π and λθ. This discrepancy
can be e.g. a forward or backward divergence KL or another f -divergence; see e.g. [Pap+19]. The

144 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

10 20 30 40 50
dim

0.00

0.25

0.50

0.75
Sliced TV

10 20 30 40 50
dim

0.1

0.2

ESS

10 20 30 40 50
dim

100

101

102
Euclidean EMD

MALA
Ex2MCMC
FlEx2MCMC

Figure 6.3: Sampling results for the asymmetric banana-shaped distribution. The Sliced TV, ESS and
EMD metrics are reported as functions of the dimension of the space.

forward KL objective and its gradient are given by

Lf (θ) =

∫
log

π(x)

λθ(x)
π(x)dx , (6.11)

∇Lf (θ) = −
∫
∇ log λθ(x)π(x)dx . (6.12)

The backward KL divergence and its gradient are given by

Lb(θ) =

∫
log

λ(x)

π
(
Tθ(x)

)
JTθ(x)

λ(x)dx , (6.13)

∇Lb(θ) = −
∫
∇ log

(
π(Tθ(x)) JTθ(x)

)
λ(x)dx . (6.14)

Note that ∇Lb(θ) does not depend on the normalizing constant of π. Thus we can compute unbiased
estimates of Lf (θ) and Lb(θ), given a sample Y [k] ∼ π and Z[k] ∼ λ for k ∈ [K], by

∇̂Lf (Y [1 : K], θ) = − 1

K

K∑
k=1

∇ log λθ(Y [k]) , (6.15)

∇̂Lb(Z[1 : K], θ) = − 1

K

K∑
k=1

∇ log
(
π̃(Tθ(Z[k]) JTθ(Z[k])

)
. (6.16)

We adapt the proposal distribution using a weighted combination of the forward and backward KL:
L̂(Y, Z, θ) = αjL̂f (Y, θ) + βjL̂b(Z, θ); see [GRV21]. In our experiments we use the following scheme for
weights: αj = min

(
1, 3j

n

)
, βj = (1− αj), where n is the number of optimization steps.

We introduce in the following a novel adaptive MCMC scheme, FlEx2MCMC, which combines
normalizing flows and Ex2MCMC; see [AT08; LLC11] for a background on adaptive MCMC. The
importance weights for FlEx2MCMC become w̃θ(x) = π̃(x)/λθ(x). The dependence between proposals
can be introduced by first correlating samples with kernels {Qi}Ni=1 which satisfy (6.4), and passing
them through the flow Tθ afterwards in order to enhance the initial proposal distribution λ. The j-th
step of the algorithm is given in Algorithm 7. We essentially perform K independent Ex2MCMC steps
with the same values of flow parameters θ and then update parameters based on the gradient estimate
obtained from all the chains.

6.4 Experiments

In this section we illustrate the efficiency of Ex2MCMC and FlEx2MCMC compared to standard
MCMC methods. In all our experiments we use the MALA rejuvenation kernel, but it is also possible
to use other kernels, e.g. HMC [Nea11] or NUTS [HG+14b]. For FlEx2MCMC proposals we use the

6.4. EXPERIMENTS 145

0.0 2.5 5.0 7.5
2
1
0
1
2
3
4

0.0 2.5 5.0 7.5
2
1
0
1
2
3
4

Figure 6.4: Asymmetric banana-shaped distribution in dimension 50: projections on first two coordi-
nates.Left: MALA, right: Ex2MCMC.

RealNVP [DSB17] normalizing flows trained with the Adam optimizer [KB14]. Additional details on the
experimental setup, including hyperparameters can be found in Supplementary material, Section 6.11
and Table 6.6. We assess sampling performance using the empirical Sliced Total Variation distance
(STV, [Kol+19]), Effective Sample Size (ESS, [Kis65]) and the empirical Euclidean Earth Mover’s
distance (EMD, [Mon81]). These metrics are defined in Supplementary Material, Section 6.11.1.

6.4.1 Sampling experiments

Distributions with complex geometry We study the ability of Ex2MCMC to sample from the
banana-shaped distributions and funnel distributions in high dimensions. Analytical expressions for
target distributions and experimental details can be found in Section 6.11.6. We use the HMC-based
NUTS sampler [HG+14b] to generate reference samples and compute STV, ESS and EMD for samples
obtained from single run of MALA, Ex2MCMC and FlEx2MCMC. The numerical results for asymmetric
banana distribution are shown on Figure 6.3 and for funnel distribution on Figure 6.11. We clearly
observe the benefits of Ex2MCMC over MALA in approximation quality (see also Figure 6.4), while
FlEx2MCMC allows to dramatically improve sampling efficiency.

Allen-Cahn equation We use FlEx2MCMC to sample from the invariant distribution of the Allen-
Cahn stochastic differential equation; see [AC75]. For the details about distribution and task setting
see [GRV21] as we fully rely on it. In their paper they propose using normalizing flows to augment
MALA algorithm that we further refer to as Augmented MALA. Figures 6.4.1 and 6.4.1 show examples
of learned maps (100 examples per map) for MALA and FlEx2MCMC respectively. We observe that
FlEx2MCMC is good in terms of exploring the sample space while MALA essentially stucks in few modes.
Figure 6.4.1 shows the autocorrelations of the examples obtained during the burn-in period and training.
We demonstrate that FlEx2MCMC allows for better mixing compared to method from [GRV21]. More
details are provided in Supplementary Material, Section 6.11.9.

Bayesian Logistic Regression Consider the training set D = {(xj , yj)}Mj=1 consisting of pairs

(xj , yj), where xj = (x
(0)
j , . . . , x

(d−1)
j) ∈ Rd and labels yj ∈ {−1, 1}. Without loss of generality, we

assume that x(0)
j = 1. The likelihood for a pair (x, y) is given by p(y | x, θ) = logit(y 〈x, θ〉), θ ∈ Rd.

Given a prior distribution p0(θ), we sample the posterior distribution p(θ | D) and compute the posterior

146 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

0 25 50 75 100

1

0

1

0 25 50 75 100

1

0

1

101 103

Burn-in and training iterations

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

FlEx2MCMC
Augmented MALA

Figure 6.5: Allen-Cahn equation. From left to right,trajectories sampled by Augmented MALA, by
FlEx2MCMC and autocorrelation plot.

i-S
IR

MA
LA

Ex
2 MC

MC
FlE

x2
MC

MC

0.4

0.6

0.8

Average p(y x,)
i-S

IR
MA

LA
Ex

2 MC
MC

FlE
x2

MC
MC

0.525

0.530

0.535

0.540

0.545

Average p(y x,)

i-S
IR

MA
LA

Ex
2 MC

MC
FlE

x2
MC

MC

0.5

0.6

0.7

0.8

0.9

1.0
Average p(y x,)

Figure 6.6: Bayesian logistic regression: average p̂(y|x,D) for (left to right) Covertype, EEG and Digits
datasets.

predictive distribution p(y | x,D). We approximate p(y | x,D) as p(y | x,D) ' 1
n

∑n
i=1 p(y | x,D, θi)

for θi ∼ p(· | D), i = 1, . . . , n. We display boxplots of the posterior predictive distribution averaged
over the dataset based on 30 independent runs of the samplers, see Figure 6.6. The results show that
Ex2MCMC achieves much higher values compared to i-SIR and MALA while FlEx2MCMC allows to
further improve the average values and also simultaneously decrease the variance. The datasets and the
implementation details are given in Supplementary Material, Section 6.11.7.

6.4.2 Sampling from GAN as Energy-based model (EBM)

Generative adversarial networks (GANs) represent a class of generative models defined by a pair
of a generator network G and a discriminator network D. The generator G takes a latent variable
z from a prior density p0(z), z ∈ Rd, and produces an observation G(z) ∈ RD in the observation
space. The discriminator takes a sample in the observation space and aims to distinguish between real
examples and fake ones, produced by the generator. Recently, it has been advocated that considering
GAN as an energy-based model increases the quality of the generated samples [Tur+19b; Che+20a].
Following [Che+20a], we consider the EBM model induced by the GAN on the latent space, contrary
to [Tur+19b] which works in the observation space. Recall that an EBM is defined by a Boltzmann-

6.4. EXPERIMENTS 147

0 100 200 300 400 500 600

120

125

130

135

140

145
En

er
gy

, D
C-

GA
N

ULA
independent Ex2MCMC
iSIR
correlated Ex2MCMC

0 100 200 300 400 500 600

25

30

35

40

45

FI
D

iSIR
correlated Ex2MCMC
ULA
independent Ex2MCMC

0 100 200 300 400 500 600

0.2

0.4

0.6

0.8

1.0

D
(G

(z
))

ULA
independent Ex2MCMC
iSIR
correlated Ex2MCMC

Figure 6.7: CIFAR-10 dataset with DC-GAN architecture. From left to right, average energy values,
FID and discriminator scores for 600 sampling iterations.

Gibbs distribution p(z) = e−E(z)/Z, z ∈ Rd, where E(z) is the energy function and Z is the normalizing
constant. We set E(z) = − log p0(z)− logit

(
D(G(z))

)
, where logit(y), y ∈ (0, 1) is the inverse of the

sigmoid function and p0(z) = g(z; 0; Idd). The distribution p(z) would perfectly reproduce the target one
even for the imperfect generator, provided that the discriminator is optimal. In most EBMs, samples are
generated from p(z) by an MCMC algorithm, either using the Unadjusted Langevin Dynamics (ULA)
or standard MCMC algorithms like MALA or HMC; see [Xie+18; Nij+20; SK21] and the references
therein. We advocate using Ex2MCMC algorithm instead.

GANs on synthetic data. Following the setting used in [Che+20a, Section 5.1], we apply Ex2MCMC
to a WGAN model [ACB17] trained on synthetic datasets. Implementation details and additional
experiments are provided in Supplement Material, Section 6.11.12. Our first example is a mixture of
M = 243 Gaussians in R5, that is, the target distribution is M−1

∑M
i=1 N(µi, σ

2 Id5) with σ2 = 1 and
centers {µi}Mi=1 equally spaced on a uniform grid at {−2; 0; 2}5. To assess the sampling performance, we
first assign each point x to its closest mode µi(x) = arg minj∈[M] ‖x− µj‖2. The point x is tagged as an
outlier if ‖x− µi(x)‖2 > t, where t is the 95% quantile of the χ2-distribution with 5 degrees of freedom.
We compute mode-std as the sample variance of points in the neighborhood of each mode and number
of captured modes as number of modes which were assigned with at least one point from the sample.
We also compute the empirical Earth Mover’s distance (EMD) between the target and the empirical
distribution. When applicable, we provide results both for single-start and multi-start regimes (see
Section 6.11.12 for more details). Results are summarized in Tables 6.1 and 6.2. This example illustrates
that Langevin-based methods explore the support of distribution only in the multi-start regime. At the
same time, each particular chain tends to stuck in one of the modes of the latent distribution p(z). At
the same time, Ex2MCMC allows to achieve high sampling quality even for the single chain.

GANs for CIFAR-10. In this experiment we investigate performance of Ex2MCMC algorithm for
sampling from EBM for GAN on the CIFAR10 dataset. As a GAN model we consider two popular
architectures, DC-GAN [RMC16] and SN-GAN [Miy+18].

We compare ULA, i-SIR , and Ex2MCMC (both with correlated and independent proposals) methods.
To evaluate sampling quality, we report the values of the energy function E(z), averaged over 1000
independent runs of each sampler. We present the results on Figure 6.7 together with the dynamics
of the Frechet Inception Distance (FID, [Heu+17]), computed over the first 600 sampler iterations.
Additional implementation details are provided in Section 6.11.13. Note that all methods except for
i-SIR improve in terms of average energy function values, and Ex2MCMC algorithms allows for the
best exploration.

At the same time, Section 6.6.2 indicates that more accurate sampling from p(z) does not yield
the desired FID improvement. Indeed, after 600 MCMC steps the best FID score corresponds to
i-SIR procedure, which keeps energy function almost constant. Hence, essentially the issue is not
with sampling from p(z), but with calibrating the EBM for p(z) itself. An interesting future research
direction is to check, if the discriminator training procedure or calibration could help to improve the
model quality. The reported result is hard to compare with the ones in [Che+20a], since the authors of

148 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

it do not show the dynamics of FID score. We provide additional experiments (including the ones with
SN-GAN) and visualizations in Section 6.11.13.

Table 6.1: GAN sampling from 243 Gaussians

Model

mode std # captured modes EMD

Mult Single Mult Single Mult Single

Vanilla GAN 0.040 34.8 3.86
ULA [Che+20a] 0.039 0.022 98 1 4.20 30.96
MALA 0.040 0.030 85.8 3.5 3.80 24.03
Ex2MCMC 0.039 0.030 89.4 62.9 3.60 3.78

Table 6.2: Results for Swiss Roll dataset

Model
EMD STV

Mult Single Mult Single

WGAN-GP 0.011 0.053
ULA [Che+20a] 0.010 2.961 0.048 0.91
MALA 0.010 0.055 0.051 0.056
Ex2MCMC 0.011 0.043 0.063 0.046

6.5 Conclusions

We propose a new MCMC algorithm, Ex2MCMC, which allows to improve over the competitors due
to the efficiency both at exploration and exploitation steps. We analyze its theoretical properties and
suggest an adaptive version of the algorithm, FlEx2MCMC, based on normalizing flows. It allows to
overcome the issues of MTM and i-SIR algorithms, which are caused by low acceptance rate when
sampling from high dimensional distributions. Further studies of FlEx2MCMC, in particular its mixing
rate, is an interesting direction for the future work.

6.6. SAMPLING GANS AS ENERGY-BASED MODEL ON CIFAR-10 149

6.6 Sampling GANs as energy-based model on CIFAR-10

We consider two popular GAN architectures, DC-GAN [RMC16] and SN-GAN [Miy+18]. Below we
provide the details on experimental setup and evaluation for both of the models.

6.6.1 DC-GAN

For DC-GAN experiments, we took the pretrained GAN model after 200 epochs from the open repository
https://github.com/csinva/gan-vae-pretrained-pytorch, to compute FID we took code from the
repository https://github.com/abdulfatir/gan-metrics-pytorch.

For DC-GAN, the latent dimension equals d = 100. Following [Che+20a], we consider sampling
from the latent space distribution

p(z) = e−E(z)/Z , z ∈ Rd , E(z) = − log p0(z)− logit
(
D(G(z))

)
, (6.17)

where logit(y) = log (y/(1− y)) , y ∈ (0, 1) is the inverse of the sigmoid function, and p0(z) = g(z; 0; Idd).
For the step size η > 0 we define (k + 1)-th iteration of the Unadjusted Langevin Algorithm as

Zk+1 = Zk − η∇E(Zk) +
√

2ηεk+1 , εk+1 ∼ N (0, Idd) . (6.18)

Note that the ergodic distribution of the corresponding continuous-time diffusion is given by p(z) =
e−E(z)/Z. We specify our choice of η in Table 6.6.

Evaluation protocol We run n = 600 iterations of the ULA, i-SIR , and Ex2MCMC algorithm in
its correlated and vanilla versions. For the vanilla Ex2MCMC algorithm (Algorithm 5), we use the
Markov kernel (6.80), corresponding to 1 MALA step, as the rejuvenation kernel. Step size γ, reported
for Ex2MCMC algorithm, corresponds to its rejuvenation MALA kernel. For the correlated Ex2MCMC
algorithm (see Algorithm 6), we bypass the rejuvenation step, since local exploration is guaranteed by
selecting large α. Additional details are provided at Table 6.3.

We run N = 50000 independent chains for each of the mentioned MCMC algorithms. Then, for
j−th iteration, we calculate average value of the energy function E(z) averaged over M = 1000 chains.
Every 40 MCMC iterations we calculate FID based on 50000 images generated on the current MCMC
step and 50000 images from the training data. We report FID results after 600 MCMC iterations at
Table 6.5.

6.6.2 SN-GAN

For SN-GAN, we took an implementation available at https://github.com/pfnet-research/sngan_
projection to reproduce results with the unconditional version of SN-GAN pretrained on CIFAR-
10, to compute FID we took statistics from the repository https://github.com/pfnet-research/
chainer-gan-lib/blob/master/common/cifar-10-fid.npz, used in the SN-GAN repository. We
additionally calibrated SN-GAN discriminator as suggested at [Aza+19], by replacing its top linear
layer with fully-connected one consisting of 3 consecutive linear layers and finetuning them with binary
cross entropy loss for 5k iterations.

Method
sampl.
steps γ # particles, N ε α

num
MALA
steps

ULA 600 0.01 – – – –
i-SIR 600 – 5 – – –

Vanilla Ex2MCMC 600 0.02 5 – – 1
Correlated Ex2MCMC 600 – 5 0.9 0.99 0

Table 6.3: CIFAR-10 hyperparameters for DC-GAN architecture.

https://github.com/csinva/gan-vae-pretrained-pytorch
https://github.com/abdulfatir/gan-metrics-pytorch
https://github.com/pfnet-research/sngan_projection
https://github.com/pfnet-research/sngan_projection
https://github.com/pfnet-research/chainer-gan-lib/blob/master/common/cifar-10-fid.npz
https://github.com/pfnet-research/chainer-gan-lib/blob/master/common/cifar-10-fid.npz

150 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

0 100 200 300 400 500 600
Iterations

140

150

160

170

180
En

er
gy

0 100 200 300 400 500 600
Iterations

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

FI
D

0 100 200 300 400 500 600
Iterations

0.4

0.5

0.6

0.7

0.8

0.9

D
(G

(z
))

ULA
i-SIR
Correlated Ex2MCMC
Vanilla Ex2MCMC

Figure 6.8: CIFAR-10 dataset with SN-GAN architecture: From left to right, average energy values,
FID and discriminator scores for first 600 sampling iterations.

For SN-GAN, generator is a mapping G(z) : Rd 7→ RD with latent dimension d = 128 and
ambient space dimension D = 784. Following [Che+20a], we performed an additional tempering of the
distribution, that is, we sampled from the energy-based model

p(z) = e−E(z)/T /Z , z ∈ Rd , E(z) = − log p0(z)− logit
(
D(G(z))

)
. (6.19)

In our experiments we observe, that simply setting T = 1 does not yield significant sampling quality
improvement, compared to vanilla GAN sampling. At the same time, setting T = 1/4 allows to
efficiently reduce the FID values, as reported in Figure 6.8.

Note that i-SIR and Ex2-MCMC with independent proposals fail to improve sampling quality
compared to the vanilla GAN sampling, as it can be observed from Section 6.6.2-(a), and average
discriminator scores D(G(z)), see Section 6.6.2-(c). Indeed, average discriminator score does not
increase. At the same time, both ULA and Ex2MCMC with correlated particles shows considerable
energy score improvement and better explore the regions of p(z) with large values D(G(z)). Ex2MCMC
shows more stable behaviour in terms of FID metrics, reported in Section 6.6.2-(b).

The evaluation protocol for SN-GAN follows the one for DC-GAN but with some adjustments,
see the value of hyperparameters in Table 6.4. We run N = 5000 independent chains for each of the
mentioned MCMC algorithms. Then, for j−th iteration, we calculate average value of the energy
function E(z) averaged over N chains. Every 20 MCMC iterations we calculate FID based on 5000
images generated on the current MCMC step and 5000 images from the training data. We report FID
results after 600 MCMC iterations at Table 6.5.

6.7 Proofs of main theoretical results of Section 6.2

Notations For k ∈ N, m,m′ ∈ N∗ and Ω,Ω′ two open sets of Rm,Rm′ respectively, denote by
Ck(Ω,Ω′), the set of k-times continuously differentiable functions. For f ∈ C2(Rd,R), denote by ∇f
the gradient of f and by ∆f the Laplacian of f . For k ∈ N and f ∈ Ck(Rd,R), denote by Di f the
i-th order differential of f for i ∈ {0, . . . , k}. For x ∈ Rd and i ∈ {1, . . . , k}, define

∥∥D0 f(x)
∥∥ = |f(x)|,∥∥Di f(x)

∥∥ = supu1,...,ui∈S(Rd) Di f(x)[u1, . . . , ui]. For k, p ∈ N and f ∈ Ck(Rd,R), define

‖f‖k,p = sup
x∈Rd, i∈{0,...,k}

∥∥Di f(x)
∥∥ /(1 + ‖x‖p) . (6.20)

Method
sampl.
steps γ # particles, N ε α

num
MALA
steps

ULA 600 0.0025 – – – –
i-SIR 600 – 4 – – –

Vanilla Ex2MCMC 600 0.005 4 – – 1
Correlated Ex2MCMC 600 – 4 0.5 0.995 0

Table 6.4: CIFAR-10 hyperparameters for SN-GAN architecture.

6.7. PROOFS 151

Table 6.5: FID for CIFAR-10 GAN-based models

Model SN-GAN DC-GAN

Vanilla GAN 18.9 35.8
ULA [Che+20a] 17.0 34.8
i-SIR 17.7 28.5
Correlated Ex2MCMC 15.8 35.2

Define Ck
poly(Rd,R) =

{
f ∈ Ck(Rd,R) : infp∈N ‖f‖k,p < +∞

}
and for any f ∈ Ck

poly(Rd,R), we consider
the semi-norm

‖f‖k = ‖f‖k,p where p = min{q ∈ N : ‖f‖k,q < +∞} . (6.21)

Finally, define C∞poly(Rd,R) = ∩k∈NCk
poly(Rd,R).

In the sequel, we denote by w(x) the normalized weight function, that is,

Π(dx) = w(x)Λ(dx) . (6.22)

6.7.1 Proof of Lemma 46

By symmetrisation, note that

PN (x,A) =

∫
δx(dx1)

N∑
i=1

w(xi)∑N
j=1w(xj)

1A(xi)
N∏
j=2

Λ(dxj) (6.23)

=
1

N

∫ N∑
`=1

δx(dx`)
∏
j 6=`

Λ(dxj)

N∑
i=1

w(xi)∑N
`=1w(x`)

1A(xi) . (6.24)

Then, ∫
Π(dx)PN (x,A) = N−1

∫
Π(dx)

N∑
`=1

δx(dx`)
∏
j 6=`

Λ(dxj)

N∑
i=1

w(xi)∑N
`=1w(x`)

1A(xi) (6.25)

= N−1

∫ (N∑
`=1

w(x`)
) N∏
j=1

Λ(dxj)
N∑
i=1

w(xi)∑N
`=1w(x`)

1A(xi) (6.26)

= N−1

∫ N∏
j=1

Λ(dxj)

N∑
i=1

w(xi)1A(xi) = Π(A) (6.27)

6.7.2 Proof of Theorem 48

We preface the proof by a technical lemma.

Lemma 51. Let Y 1:M be i.i.d. random variables, such that E[Y1] = 1, and P(Y1 ∈ [0,L]) = 1. Then
for S =

∑M
i=1 Yi and a, b > 0

E
[
(a+ bS)−1

]
6 (a+ bM/2)−1 + (1/a) exp(−M/(2L2)). (6.28)

Proof. Let K > 0. Then we get

1

a+ bS
=

1

a+ bS
1 {S < K}+

1

a+ bS
1 {S > K} (6.29)

6
1

a+ bK
1 {S > K}+

1

a+ bS
1 {S < K} 6 1

a+ bK
+

1

a
1 {S < K} (6.30)

152 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

and in particular, E[(a+ bS)−1] 6 (a+ bK)−1 + a−1P(S < K). By Hoeffding’s inequality,

P(S < K) = P(S −M < −(M −K)) 6 exp(−2(M −K)2/(ML2)). (6.31)

In particular, for K = M/2, we have P(S < K) 6 exp(−M/(2L2)).

Proof of Theorem 48. (i) Under H6, we have, for (x,A) ∈ X×X ,

PN (x,A) =

∫
δx(dx1)

N∑
i=1

w(xi)∑N
j=1w(xj)

1A(xi)

N∏
j=2

Λ(dxj) (6.32)

=

∫
w(x)

w(x) +
∑N

j=2w(xj)
1A(x)

N∏
j=2

Λ(dxj) +

∫ N∑
i=2

w(xi)

w(x) +
∑N

j=2w(xj)
1A(xi)

N∏
j=2

Λ(dxj)

(6.33)

>
N∑
i=2

∫
w(xi)

w(x) + w(xi) +
∑N

j=2,j 6=iw(xj)
1A(xi)

N∏
j=2

Λ(dxj) (6.34)

>
N∑
i=2

∫
Π(dxi)1A(xi)

∫
1

w(x) + w(xi) +
∑N

j=2,j 6=iw(xj)

N∏
j=2,j 6=i

Λ(dxj) . (6.35)

Finally, since the function f : z 7→ (z + a)−1 is convex on R+ and a > 0, we get for i ∈ {2, . . . , N},∫
1

w(x) + w(xi) +
∑N

j=2,j 6=iw(xj)

N∏
j=2,j 6=i

Λ(dxj) (6.36)

>
1∫

w(x) + w(xi) +
∑N

j=2,j 6=iw(xj)
∏N
j=2,j 6=i Λ(dxj)

(6.37)

>
1

w(x) + w(xi) +N − 2
>

1

2L +N − 2
. (6.38)

We finally obtain the inequality

PN (x,A) > Π(A)× N − 1

2L +N − 2
= εNΠ(A) . (6.39)

This means that the whole space X is (1, εNΠ)-small (see [Dou+18, Definition 9.3.5]). Since PN (x, ·)
and Π are probability measures, (6.39) implies

‖PN (x, ·)−Π‖TV = sup
A∈X
|PN (x,A)−Π(A)| 6 1− εN = κN . (6.40)

Now the statement follows from [Dou+18, Theorem 18.2.4] applied with m = 1.
(ii) Let V : X→ [1,∞) be a measurable function such that Π(V) <∞ and Λ(V) <∞. We aim to

check first the drift condition
PNV (x) 6 κNV (x) + bN (6.41)

with the constants κN and bN defined in Theorem 48 and (6.51), respectively. Setting x1 = x, we
obtain

PNV (x) =

∫ N∑
i=1

w(xi)∑N
j=1w(xj)

V (xi)

N∏
j=2

Λ(dxj) (6.42)

= V (x)

∫
w(x)∑N
j=1w(xj)

N∏
j=2

Λ(dxj) +

∫ N∑
i=2

w(xi)∑N
j=1w(xj)

V (xi)

N∏
j=2

Λ(dxj). (6.43)

6.7. PROOFS 153

We bound these two terms separately.

V (x)

∫
w(x)∑N
j=1w(xj)

N∏
j=2

Λ(dxj) = V (x)

∫ (
1−

∑N
j=2w(xj)∑N
j=1w(xj)

)
N∏
j=2

Λ(dxj) (6.44)

=V (x)

1−
N∑
k=2

∫
w(xk)

w(x) + w(xk) +
∑N

j=2,j 6=k w(xj)

N∏
j=2

Λ(dxj)

 (6.45)

=V (x)

1−
N∑
k=2

∫
π(dxk)

w(x) + w(xk) +
∑N

j=2,j 6=k w(xj)

N∏
j=2,j 6=k

Λ(dxj)

 . (6.46)

From (6.36), we get that

V (x)

∫
w(x)∑N
j=1w(xj)

N∏
j=2

Λ(dxj) 6 V (x)

(
1− N − 1

2L +N − 2

)
= κNV (x). (6.47)

Moreover, we have∫ N∑
i=2

w(xi)V (xi)∑N
j=1w(xj)

N∏
j=2

Λ(dxj) = (N − 1)

∫
w(x2)V (x2)Λ(dx2)

w(x) + w(x2) +
∑N

j=3w(xj)

N∏
j=3

Λ(dxj) . (6.48)

Since the function z 7→ z/(z + a) is concave on R+ for a > 0, we have∫
w(x2)

w(x) + w(x2) +
∑N

j=3w(xj)
V (x2)Λ(dx2) (6.49)

= Λ(V)

∫
w(x2)

w(x2) + w(x) +
∑N

j=3w(xj)

V (x2)Λ(dx2)

Λ(V)

6 Λ(V)

∫
w(x2)V (x2)Λ(dx2)/Λ(V)∫

w(x2)V (x2)Λ(dx2)/Λ(V) + w(x) +
∑N

j=3w(xj)
6

Π(V)

Π(V)/Λ(V) + w(x) +
∑N

j=3w(xj)
.

Using Lemma 51, with Yi = w(xi),∫
Π(V)

Π(V)/Λ(V) +
∑N

j=3w(xj)

N∏
j=3

Λ(dxj) 6
Π(V)

Π(V)/Λ(V) + (N − 2)/2
+ Λ(V) exp(−(N − 2)/2L2) .

(6.50)
Writing in this case

bN =
Π(V)(N − 1)

Π(V)/Λ(V) + (N − 2)/2
+ Λ(V)(N − 1) exp(−(N − 2)/2L2) (6.51)

concludes the proof.
Moreover, (i) implies that for any dN > 1 the level sets {x ∈ X : V (x) 6 dN} are (1, εNΠ)-small. Let us
choose dN = 1∨4bN/(1−κN)−1∨2/κN . Then κN +2bN/(1+dN) < 1, and [Dou+18, Theorem 19.4.1]
implies

‖PnN (x, ·)−Π‖V 6 cN{V (x) + Π(V)}κ̃nN , (6.52)

where the constants κ̃N and cN are given by

log κ̃N =
log κN log λ̄N(

log κN + log λ̄N − log b̄N
) , cN = (λ̄N + 1)(1 + b̄N/[κN (1− λ̄N)]) (6.53)

λ̄N = κN + 2bN/(1 + dN) , b̄N = κNbN + dN , dN = 1 ∨ 4bN/(1− κN)− 1 ∨ 2/κN . (6.54)

154 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

In the expression above we used the fact that 1 − εN = κN . The choice of dN in (6.53) implies
2bN/(1 + dN) 6 bNκN . Then the elementary calculations imply κN 6 λ̄N 6 (bN + 1)κN and

κ̃N 6 κθNN , (6.55)

where

θN =
log(1/λ̄N)(

log(1/κN) + log(1/λ̄N) + log b̄N
) >

log(1/κN)− log(bN + 1)

2 log(1/κN) + log b̄N
=

1

3
+ αN . (6.56)

In the expression above αN → 0 when N →∞, since bN 6 4Π(V) for N > 3.

6.7.3 Proof of Theorem 49

We preface the proof with some preparatory lemmas.

Lemma 52. Let K ⊂ X, such that supx∈K w(x) < w∞,K < ∞ and Π(K) > 0. Then, for all (x,A) ∈
K×X ,

PN (x,A) > εN,KΠK(A) , (6.57)

with εN,K = (N − 1)Π(K)/[2w∞,K +N − 2] and ΠK(A) = Π(A ∩ K)/Π(K).

Note that if the weight function w is continuous, then for any compact K, supx∈K w(x) < w∞,K <∞.

Proof. Let (x,A) ∈ X×X . Then

PN (x,A) =

∫
w(x)

w(x) +
∑N

j=2w(xj)
1A(x)

N∏
j=2

Λ(dxj) +

∫ N∑
i=2

w(xi)

w(x) +
∑N

j=2w(xj)
1A(xi)

N∏
j=2

Λ(dxj)

(6.58)

>
N∑
i=2

∫
w(xi)

w(x) + w(xi) +
∑N

j=2,j 6=iw(xj)
1A(xi)

N∏
j=2

Λ(dxj) (6.59)

>
N∑
i=2

∫
Π(dxi)1A(xi)

∫
1

w(x) + w(xi) +
∑N

j=2,j 6=iw(xj)

N∏
j=2,j 6=i

Λ(dxj) (6.60)

> (N − 1)

∫
Π(dx1)1A(x1)

1

w(x) + w(x1) +N − 2
, (6.61)

where the last inequality follows from Jensen’s inequality and the convexity of the function z 7→ (z+a)−1

on R+. Now,

PN (x,A) > (N − 1)

∫
Π(dx1)1A∩K(x1)

1

w(x) + w(x1) +N − 2
(6.62)

>
N − 1

2w∞,K +N − 2

∫
Π(dy)1A∩K(y) =

(N − 1)Π(K)

2w∞,K +N − 2
ΠK(A) . (6.63)

Lemma 53. Let P be a Markov kernel on (X,X), γ be a probability measure on (X,X), and ε > 0.
Let also C ∈ X be an (1, εγ)-small set for P. Then for arbitrary Markov kernel Q on (X,X), the set C
is an (1, εγQ)-small set for PQ, where γQ(A) =

∫
γ(dy)Q(y,A) for A ∈ X .

Proof. Let (x,A) ∈ C×X . Then it holds

PQ(x,A) =

∫
P(x, dy)Q(y,A) > ε

∫
C
γ(dy)Q(y,A) = εγQ(A) . (6.64)

6.7. PROOFS 155

Lemma 54. Let P and Q be two irreducible Markov kernels with Π as their unique invariant distribution.
Let V : X → [1,∞) be a measurable function. Assume that there exists λQ ∈ [0, 1) and bP, bQ ∈ R+

such that PV (x) 6 V (x) + bP and QV (x) 6 λQV (x) + bQ. Let d0 > 1. Assume in addition, that
for all d > d0, there exist εd > 0 and a probability measure γd such that for all (x,A) ∈ Vd × X ,
P(x,A) > εdγd(A), where Vd = {x ∈ X : V (x) 6 d}. Define K = PQ and λK = λQ, bK = bP + bQ.
Then,

KV (x) 6 λKV + bK and, for all x ∈ Vd, K(x,A) > εdγQ,d(A),

where γQ,d(A) =
∫
γd(dy)Q(y,A).

Let d > d0 be such that λK + 2bK/(1 + d) < 1. Then, for any x ∈ X and k ∈ N,

‖Kk(x, ·)−Π‖V 6 cK{V (x) + Π(V)}ρkK
with

ρK =
log(1− εd) log λ̄K

log(1− εd) + log λ̄K − log b̄K
, (6.65)

with λ̄K = λK + 2bK/(1 + d), b̄K = λKbK + d, and cK = (λK + 1)(1 + b̄K/[(1− εVd)(1− λ̄K)]).

Proof. By Lemma 53, we have directly that for any (x,A) ∈ Vd ×X , K(x,A) > εdγQ,d(A). Moreover,
for any x ∈ X, KV (x) = PQV (x) 6 λQPV (x) + bQ 6 λQV (x) + bQ + bP. The proof is completed with
[Dou+18, Theorem 19.4.1].

Proof of Theorem 55. Note first, that the Markov kernel of Ex2MCMC algorithm can be represented
as a composition KN = PNR with R being the rejuvenation kernel. Applying the same symmetrisation
argument as (6.23), we write KN for (x,A) ∈ X×X as

KN (x,A) =
1

N

∫ N∑
`=1

δx(dx`)
∏
i 6=`

Λ(dxi)

N∑
i=1

w(xi)∑N
`=1w(x`)

R(xi,A) . (6.66)

Applying (6.42)-(6.48)-(6.49), we get

PNV (x) = V (x)

∫
w(x)

w(x) +
∑N

j=2w(xj)

N∏
j=2

Λ(dxj) +

∫ N∑
i=2

w(xi)∑N
j=1w(xj)

V (xi)
N∏
j=2

Λ(dxj) (6.67)

6 V (x) + (N − 1)UN with UN =

∫
Π(V)

Π(V)/Λ(V) + w(x) +
∑N

j=3w(xj)

N∏
j=3

Λ(dxj) (6.68)

On the other hand, using (6.29) with K = (N − 2)/2 together with Markov inequality,

UN 6
Π(V)

Π(V)/Λ(V) + (N − 2)/2
+ Λ(V)

∫
1{

∑N
j=3{w(xj)−1}6−(N−2)/2}

N∏
j=3

Λ(dxj) , (6.69)

6
Π(V)

Π(V)/Λ(V) + (N − 2)/2
+

4Λ(V) VarΛ[w]

N − 2
, (6.70)

where VarΛ[w] =
∫
{w(x) − 1}2Λ(dx) is the variance of the normalized weight functions under the

proposal distribution. Combining the above results, for any x ∈ X,

PNV (x) 6 V (x) + bPN , where bPN =
Π(V)(N − 1)

Π(V)/Λ(V) + (N − 2)/2
+

4(N − 1)Λ(V) VarΛ[w]

N − 2
. (6.71)

Assumption H7-(i) implies RV (x) 6 λRV (x) + bR. Assumption H7-(iii) together with Lemma 52
implies that the level sets Vd are (1, εd,Nγd)-small for the Markov kernel PN . Here the probability
measure γd and εd,N are given, for any A ∈ X , by

γd(A) =

∫
ΠVd(dy)R(y,A) , where ΠVd(B) = Π(B ∩ Vd)/Π(Vd), B ∈ X ,

εd,N = (N − 1)Π(Vd)/[2w∞,d +N − 2] .

(6.72)

156 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

Hence all conditions of Lemma 54 are satisfied. Choose dN = 1 ∨ 4(bR + bPN)/(1 − λR) − 1. Then
λR + 2(bR + bPN)/(1 + dN) < 1, and Lemma 54 implies for any x ∈ X and k ∈ N,

‖Kk
N (x, ·)−Π‖V 6 cN,R{V (x) + Π(V)}λr[N,R]k ,

where the constants cN,R and λr[N,R] are given by

log λr[N,R] =
log(1− εd,N) log λ̄R

log(1− εd,N) + log λ̄R − log b̄R
, cN,R = (λR + 1)(1 + b̄R/[(1− εd,N)(1− λ̄R)]) (6.73)

λ̄R = λR + 2bR/(1 + d) , b̄R = λRbR + dN , dN = 1 ∨ 4(bR + bPN)/(1− λR)− 1 , (6.74)

and εd,N defined in (6.72). It is easy to see from this expression that, for dN being fixed, λr[N,R]
decreases with N →∞.

6.7.4 Proof of Theorem 50

The algorithm Ex2MCMC defines a Markov chain {Yj , j ∈ N} with Markov kernel

CN (x,A) =
1

N

∫ N∑
j=1

δx(dxj)Qj

(
xj , dx1:N\{j})× N∑

i=1

w(xi)∑N
`=1w(x`)

R(xi,A) . (6.75)

Let f be a nonnegative measurable function. Using that Π(dy)δy(dx
j) = Π(dxj)δxj (dy), Π(dxj) =

Λ(dxj)w(xj), and Λ(dxj)Qj

(
xj , dx1:N\{j}) = Λ̄N

(
dx1:N

)
, we get∫

Π(dy)CN (y,dy′)f(y′) = N−1

∫ N∑
j=1

w(xj)Λ̄N
(
dx1:N

) N∑
i=1

w(xi)∑N
`=1 w(x`)

Rf(xi) (6.76)

= N−1

∫ N∑
i=1

w(xi)Rf(xi)Λ̄N
(
dx1:N

)
. (6.77)

Using that

w(xi)Λ̄N
(
dx1:N

)
= w(xi)Λ(dxi)Qj

(
xj , dx1:N\{j}) = Π(dxi)Qi

(
xi, dx1:N\{i}) , (6.78)

we obtain

N−1

∫ N∑
i=1

w(xi)Rf(xi)Λ̄N
(
dx1:N

)
= N−1

N∑
i=1

Π(dxi)Rf(xi)Qi

(
xi,dx1:N\{i})

=
N∑
i=1

∫
Π(dxi)f(xi)

∫
Qi

(
xi,dx1:N\{i}) =

∫
Π(dy)f(y) , (6.79)

where we have used
∫

Qi

(
xi,dx1:N\{i}) = 1.

6.8 Metropolis-Adjusted Langevin rejunevation kernel

Assume that X = Rd and the target distribution Π is absolutely continuous with Π(dx) = π(x)dx,
where π(x) = exp{−U(x)} with continuously differentiable function U(x). Then the MALA kernel is
given, for η > 0, x, z ∈ Rd, and A ∈ B(Rd), by

RMALA
η (x,A) =

∫
Rd
1A(x− η∇U(x) +

√
2ηz) min(1, e−τ

MALA
η (x,z))ϕ(z)dz (6.80)

δx(A)

∫
Rd
{1−min(1, e−τ

MALA
η (x,z))}ϕ(z)dz ,

τMALA
η (x, z) = U(x− η∇U(x) +

√
2ηz)− U(x) (6.81)

+ (1/2){
∥∥∥z − (η/2)1/2

{
∇U(x) +∇U(x− η∇U(x) +

√
2ηz)

}∥∥∥2
− ‖z‖2} . (6.82)

6.8. METROPOLIS-ADJUSTED LANGEVIN REJUNEVATION KERNEL 157

Note that the MALA kernel leaves the target π invariant. For notation simplicity, in this section we
simply write Rη instead of RMALA

η . Consider the following assumptions on the target distribution:

H8. U(x) ∈ C∞poly

(
Rd,R

)
, and ∇U is Lipschitz, i.e. there exists L > 0 such that ‖∇U(x)−∇U(y)‖ 6

L‖x− y‖ for all x, y ∈ Rd.

H9. There exist K1 > 0 and m > 0 such that for any x 6∈ B(0,K1), and y ∈ Rd,
〈
D2 U(x)y, y

〉
> m ‖y‖2.

Moreover, there exists M > 0 such that for any x ∈ Rd,
∥∥D3 U(x)

∥∥ 6M .

Theorem 55. Assume H8, H9 and that the proposal distribution has a continuous and positive p.d.f.
Λ(x). Then H7 is satisfied with V (x) = exp(η̄ ‖x‖2), η̄ given in (6.95).

Proof. Proposition 63 implies that H7-(ii) holds with Assume H8 and H9. Then there exist γ̄ > 0,
$ > 0, and K2, b̄ > 0 such that for any η ∈ (0, γ̄] and x ∈ Rd,

RηVη̄(x) 6 λRηVη̄(x) + bRη , where λRη = 1−$η, bRη = b̄η , (6.83)

and the parameters $ and b̄ are given in (6.135). Moreover, since Λ and Π are continuous and Λ(x) > 0,
the weight function w(x) is bounded on the compact sets and H7-(iii) holds. Hence, all conditions of
Lemma 54 are satisfied.

Consider now the sampling problem described in Section 6.11.4. We state the following result.

Proposition 56. Let π(x) = g(x; 0, IdD) and λ(x) = g(x; 0, 2 IdD). Let Vη̄(x) = exp(η̄ ‖x‖2), where
η̄ is given in (6.95). Then, for N > e2η̄D, the Markov kernel of Ex2MCMC algorithm with MALA
rejuvenation kernel satisfies

‖Kk
N (x, ·)−Π‖V 6 cK{Vη̄(x) + Π(Vη̄)}λr[N,R]k , where log λr[N,R] 6

log(1−$η)

1 + 8η̄
+ αN , (6.84)

and αN → 0 for N →∞, and cK is given in (6.74).

Proof. From the proof of Theorem 55, it follows that

‖Kk
N (x, ·)−Π‖V 6 cN,R{V (x) + Π(V)}λr[N,R]k ,

where the constants cN,R and λr[N,R] are given in (6.74). We first estimate the quantity εdN ,N =
(N − 1)Π(VdN)/[2w∞,dN +N − 2]. Note that

w∞,dN 6 sup
x∈RD

π(x)

λ(x)
= 2D/2 ,

which does not depend on the choice of dN . Hence, for any choice dN , εdN ,N/Π(VdN) → 1 as
N → ∞. Now we can lower bound Π(VdN) as follows. Note that VdN = {x ∈ X : Vη̄(x) 6 dN} ={
x ∈ X : ‖x‖2 6 log dN/η̄

}
. Then, for log dN/η̄ > 2D, we write

Π(VdN) = P
(
‖Z‖2 6

(
log dN
η̄
− D

)
+ D

)
> 1− exp

{
− log dN

8η̄
+

D

8

}
, (6.85)

where Z = (Z1, . . . , ZD) ∼ Π. Here we use the fact that ‖Z‖2 is a chi-squared random variable with D

degrees of freedom and [Wai19, Proposition 2.2]. Hence, log(1− εd,N) 6 −
(

log dN
8η̄ − D

8

)
. Then using

the expression (6.74) and choosing

dN = 1 ∨ 4(bR + bPN)/(1− λR)− 1 ∨N ∨ e2η̄D , (6.86)

we have

log λr[N,R] =
log(1− εd,N) log λ̄R

log(1− εdN ,N) + log λ̄R − log b̄R
=

log λ̄R

1 + log λ̄R/ log(1− εdN ,N)− log b̄R/ log(1− εdN ,N)
.

(6.87)

Note that log λ̄R/ log(1− εdN ,N)→ 0, N →∞. Now the statement follows from log b̄R/ log(1− εdN ,N) =
−8η̄ + βN , βN → 0 for N →∞.

158 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

6.9 Technical lemmas for Metropolis-Adjusted Langevin kernel

The goal of this section is to establish the Foster-Lyapunov drift condition for the Markov kernel RMALA
η

defined in (6.80). As an auxiliary result we need to establish the drift condition for the Markov kernel
QULA
η , defined as

QULA
η (x,A) =

∫
Rd
1A

(
x− η∇U(x) +

√
2ηz
)
ϕ(z)dz , (6.88)

where ϕ is the d-dimensional standard Gaussian density ϕ(z) = (2π)−d/2e−‖z‖
2

. Define for any η > 0,
Vη(x) : Rd → [1,+∞) as

Vη(x) = exp(η ‖x‖2) . (6.89)

For notation simplicity, we write in this section Qη instead of QULA
η , and Rη instead of RMALA

η . We
begin with the technical lemma.

Lemma 57. Assume H8 and H9. Then there exists K2 > 0 such that for any x 6∈ B(0,K2), 〈∇U(x), x〉 >
(m/2) ‖x‖2 and in particular ‖∇U(x)‖ > (m/2) ‖x‖.
Proof. Using H8 and H9, we have for any x ∈ Rd, ‖x‖ > K1,

〈∇U(x), x〉 =

∫ K1 /‖x‖

0
D2 U(tx)[x⊗2]dt+

∫ 1

K1 /‖x‖
D2 U(tx)[x⊗2]dt (6.90)

> m ‖x‖2 {1−K1(1 + L/m)/ ‖x‖} , (6.91)

which proves the first statement. The second statement easily follows from the Cauchy-Schwartz
inequality.

Lemma 58. Assume H8 and H9. Then, for any t ∈ [0, 1], η ∈ (0, 1/(4L)] and x, z ∈ Rd, ‖z‖ 6
‖x‖ /(4√2η), it holds ∥∥∥x+ t{−η∇U(x) +

√
2ηz}

∥∥∥ > ‖x‖ /2 . (6.92)

Proof. Let t ∈ [0, 1], η ∈ (0, 1/(4L)] and x, z ∈ Rd, ‖z‖ 6 ‖x‖ /(4√2η). Using the triangle inequality
and H8, we have since t ∈ [0, 1]∥∥∥x+ t{−η∇U(x) +

√
2ηz}

∥∥∥ > (1− ηL) ‖x‖ −
√

2η ‖z‖ . (6.93)

The conclusion then follows from η 6 1/(4L) and ‖z‖ 6 ‖x‖ /(4√2η).

Now we establish the drift condition for QULA
η .

Lemma 59. Assume H8 and H9, and let γ̄ ∈
(
0,m/(4L2)

]
. Then, for any η ∈ (0, γ̄],

QηVη̄(x) 6 exp
(
−η̄mγ ‖x‖2 /4

)
Vη̄(x) + bη̄γ1B(0,K3)(x) , (6.94)

where Vη̄ is defined by (6.89), η̄ = min(m/16, (8γ̄)−1), K3 = max(K2, 4
√
d/m), and

bη̄ =
[
η̄
{
m/4 + (1 + 16η̄γ̄)(4η̄ + 2L+ γ̄L2)

}
K2

3 +4η̄d
]

× exp
[
γ̄η̄
{
m/4 + (1 + 16η̄γ̄)(4η̄ + 2L+ γ̄L2)

}
K2

3 +(d/2) log(2)
]
.

(6.95)

Proof. Let η ∈ (0, γ̄]. For any x ∈ Rd, we have

η̄
∥∥∥x− η∇U(x) +

√
2ηz
∥∥∥2
− ‖z‖2 /2 = −1− 4η̄η

2

∥∥∥∥∥z − 2(2η)1/2η̄

1− 4η̄η
{x− η∇U(x)}

∥∥∥∥∥
2

+
η̄

1− 4η̄η
‖x− η∇U(x)‖2 . (6.96)

6.9. TECHNICAL LEMMAS FOR METROPOLIS-ADJUSTED LANGEVIN KERNEL 159

Since 1− 4η̄η > 0, we get that

QηVη̄(x) = (2π)−d/2
∫
Rd

exp

(
η̄
∥∥∥x− η∇U(x) +

√
2ηz
∥∥∥2
− ‖z‖2 /2

)
dz

= (1− 4η̄η)−d/2 exp
(
η̄(1− 4η̄η)−1 ‖x− η∇U(x)‖2

)
. (6.97)

We now distinguish the case when ‖x‖ > K3 and ‖x‖ < K3. By H9 and Lemma 57, for any x ∈ Rd,
‖x‖ > K3 > K2, using that η̄ 6 m/16 and η 6 γ̄ 6 m/(4L2), we have

(1− 4η̄η)−1 ‖x− η∇U(x)‖2 − ‖x‖2 6 η ‖x‖2 (1− 4η̄η)−1
(
4η̄ −m+ ηL2

)
6 −η(m/2) ‖x‖2 (1− 4η̄η)−1 .

(6.98)

Therefore, (6.97) becomes

QηVη̄(x) 6 exp
(
−ηη̄(m/2)(1− 4η̄η)−1 ‖x‖2 − (d/2) log(1− 4η̄η)

)
Vη̄(x) (6.99)

6 exp
(
ηη̄{−(m/2) ‖x‖2 + 4d}

)
Vη̄(x) , (6.100)

where we have used for the last inequality that − log(1− t) 6 2t for t ∈ [0, 1/2] and 4η̄η 6 1/2. The
proof of the statement then follows since ‖x‖ > K3 > 4

√
d/m.

In the case ‖x‖ < K3, by (6.97), H8 and since (1− t)−1 6 1 + 4t for t ∈ [0, 1/2], we obtain

(1− 4η̄η)−1 ‖x− η∇U(x)‖2 − ‖x‖2 6 η(1− 4η̄η)−1{4η̄ + 2L+ ηL2} ‖x‖2 (6.101)

6 η(1 + 16η̄η){4η̄ + 2L+ ηL2} ‖x‖2 , (6.102)

which implies that

QηVη̄(x)/Vη̄(x) 6 e−η̄mη‖x‖
2/4+

exp
[
ηη̄
{
m/4 + (1 + 16η̄η)(4η̄ + 2L+ ηL2)

}
‖x‖2 − (d/2) log(1− 4η̄η)

]
− 1 . (6.103)

The proof is then completed using that for any t > 0, et− 1 6 tet, for any s ∈ [0, 1/2], − log(1− s) 6 2s
and 4η̄η 6 1/2.

We now provide a decomposition in η of τMALA
η defined in (6.81). For any x, z ∈ Rd, by [DMS17,

Lemma 24]1, we have that

τMALA
η (x, z) =

6∑
k=2

ηk/2Ak,η(x, z) (6.104)

where, setting xt = x+ t{−η∇U(x) +
√

2ηz},

A2,η(x, z) = 2

∫ 1

0
D2 U(xt)[z

⊗2](1/2− t)dt (6.105)

A3,η(x, z) = 23/2

∫ 1

0
D2 U(xt)[z ⊗∇U(x)](t− 1/4)dt , (6.106)

A4,η(x, z) = −
∫ 1

0
D2 U(xt)[∇U(x)⊗2]tdt+ (1/2)

∥∥∥∥∫ 1

0
D2 U(xt)[z]dt

∥∥∥∥2

(6.107)

A5,η(x, z) = −(1/2)1/2

〈∫ 1

0
D2 U(xt)[∇U(x)]dt,

∫ 1

0
D2 U(xt)[z]dt

〉
(6.108)

A6,η(x, z) = (1/4)

∥∥∥∥∫ 1

0
D2 U(xt)[∇U(x)]dt

∥∥∥∥2

. (6.109)

1Note that with the notation of [DMS17], MALA corresponds to HMC with only one leapfrog step and step size equals
to (2η)1/2

160 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

Lemma 60. Assume H8 and H9. Then, for any γ̄ > 0, there exists C1,γ̄ < ∞ such that for any
x, z ∈ Rd, γ ∈ (0, γ̄], it holds ∣∣τMALA

η (x, z)
∣∣ 6 C1,γ̄γ

3/2{1 + ‖z‖4 + ‖x‖2} . (6.110)

Proof. Since
∫ 1

0 D2 U(x)[z⊗2](1/2− t)dt = 0, we get setting xt = x+ t{−γ∇U(x) +
√

2γz},

A2,γ(x, z)

=
√
γ

∫∫ 1

0
D3 U(sxt + (1− s)x)

[
z⊗2 ⊗ {−γ1/2∇U(x) +

√
2z}
]

(1/2− t)tdsdt . (6.111)

The proof follows from supx∈Rd
∥∥D2 U(x)

∥∥ 6 L and supx∈Rd
∥∥D3 U(x)

∥∥ 6M .

Lemma 61. Assume H8 and H9. Then, for any γ̄ ∈
(
0,m3/(4L4)

]
there exists C2,γ̄ <∞ such that for

any η ∈ (0, γ̄], x, z ∈ Rd satisfying ‖x‖ > max(2 K1,K2) and ‖z‖ 6 ‖x‖ /(4√2η), where K2 is defined
in Lemma 57, it holds

τMALA
η (x, z) 6 C2,γ̄η ‖z‖2 {1 + ‖z‖2} . (6.112)

Proof. Let η ∈ (0, γ̄], x, z ∈ Rd satisfying ‖x‖ > max(2 K1,K2) and ‖z‖ 6 ‖x‖ /(4√2η). Using (6.104),
we get setting

A4,0,η(x, z) =

∫ 1

0
D2 U(xt)[∇U(x)⊗2]tdt ,

τMALA
η (x, z) 6 2ηA2,η(x, z)− η2A4,0,η(x, z)

+ (2η)3/2L2 ‖z‖ ‖x‖+ (η2/2)L2 ‖z‖2 + (η5/2)1/2L3 ‖z‖ ‖x‖+ (η3/4)L4 ‖x‖2 , (6.113)

By H8, Lemma 57 and Lemma 58, we get for any x ∈ Rd, ‖x‖ > max(2 K1,K2),

A4,0,γ(x, z) > (m/2)3 ‖x‖2 . (6.114)

Combining this result with (6.111), (6.114) in (6.113), we obtain using γ 6 γ̄ 6 m3/(4L4)

τMALA
η (x, z) 6 2γM

{√
2γ ‖z‖3 + γL ‖z‖2 ‖x‖

}
− γ2(m3/24) ‖x‖2 (6.115)

+ (2γ)3/2L2 ‖z‖ ‖x‖+ (γ2/2)L2 ‖z‖2 + (γ5/2)1/2L3 ‖z‖ ‖x‖ , (6.116)

Since for any a, b ∈ R+ and ε > 0, ab 6 (ε/2)a2 + 1/(2ε)b2, we obtain

τMALA
η (x, z) 6 η ‖z‖2

{
21/2L2ε−1 + (η/2)L2 + 2−3/2η3/2L3ε−1 (6.117)

+ (23η)1/2M ‖z‖+ ηMLε−1 ‖z‖2
}

(6.118)

+ ‖x‖2 η2
[
ε
{
LM + 21/2L2 + 2−3/2γ̄1/2L3

}
−m3/24

]
. (6.119)

Choosing ε = (m3/24)
{
LM + 21/2L2 + 2−3/2γ̄1/2L3

}−1 concludes the proof.

Lemma 62. Let γ̄ > 0 and γ ∈ (0, γ̄]. Then, for any x ∈ Rd, ‖x‖ > 20
√

2γ̄d,∫
Rd\B(0,‖x‖/(4

√
2γ))

ϕ(z)dz 6 exp(−‖x‖2 /(128γ)) . (6.120)

Proof. Let x > 0. By [LM00, Lemma 1],

P(‖Z‖2 > 2{
√
d+
√
x}2) 6 P(‖Z‖2 > d+ 2

√
dx+ 2x) 6 e−x , (6.121)

where Z is a d-dimensional standard Gaussian vector. Setting t = 2{
√
d+
√
x}2, we obtain

P(‖Z‖2 > t) 6 exp
(
−
{
d+ t/2−

√
2td
})

, (6.122)

and for
√
t > 5

√
d, we get P(‖Z‖ >

√
t) 6 e−t/4 which gives the result.

6.9. TECHNICAL LEMMAS FOR METROPOLIS-ADJUSTED LANGEVIN KERNEL 161

Proposition 63. Assume H8 and H9. Then there exist γ̄ > 0, $ > 0, and K2, b̄ > 0 such that for any
η ∈ (0, γ̄] and x ∈ Rd,

RηVη̄(x) 6 (1−$η)Vη̄(x) + b̄η1B(0,K2)(x) , (6.123)

where Vη̄ is defined by (6.89), Rη is the MALA kernel given in (6.80) and η̄ is given by (6.95).

Proof. Let γ̄1 = m/(4L2). By Lemma 59, for any γ ∈ (0, γ̄1] and x ∈ Rd,

RηVη̄(x) 6 QηVη̄(x) + Vη̄(x)

∫
Rd
{1−min(1, e−τ

MALA
η (x,z)}ϕ(z)dz (6.124)

6 e−η̄mγ‖x‖
2/4Vη̄(x) + bη̄γ1B(0,K3)(x) + Vη̄(x)

∫
Rd
{1−min(1, e−τ

MALA
η (x,z)}ϕ(z)dz , (6.125)

where K3 and bη̄ are given in (6.95). Let

γ̄2 = min
(
1, γ̄1,m

3/(4L4)
)
, M1 = max

(
1, 2 K1,K2,K3, 20

√
2γ̄2d

)
. (6.126)

Then, by Lemma 61 and Lemma 62, there exist C1 > 0 such that for any x ∈ Rd, ‖x‖ > M1 and
γ ∈ (0, γ̄2],

RηVη̄(x) 6 e−η̄mγ‖x‖
2/4Vη̄(x) + Vη̄(x)

{
C1γ + exp(−‖x‖2 /(128γ))

}
(6.127)

6 e−η̄mγ‖x‖
2/4Vη̄(x) + Vη̄(x) {C1γ + exp(−1/(128γ))} . (6.128)

Using that there exists C2 > 0 such that supt∈(0,1){t−1 exp(−1/(128t))} 6 C2 we get for any x ∈ Rd,
‖x‖ >M1, γ ∈ (0, γ̄2],

RηVη̄(x) 6 e−η̄mγ‖x‖
2/4Vη̄(x) + Vη̄(x)γ {C1 + C2} . (6.129)

Let
M2 = max

(
M1, 4(C1 + C2)1/2(η̄m)−1/2

)
, γ̄3 = min

(
γ̄2, 4

{
mη̄M2

2

}−1
)
. (6.130)

Then, since for any t ∈ [0, 1], e−t 6 1− t/2, we get for any x ∈ Rd, ‖x‖ >M2, γ ∈ (0, γ̄3],

RηVη̄(x) 6 e−η̄mηM
2
2 /4Vη̄(x) + Vη̄(x)η {C1 + C2}

6
[
1− η

{
η̄mM2

2 /8− C1 − C2

}]
Vη̄(x)

6
{

1− ηη̄mM2
2 /16

}
Vη̄(x) . (6.131)

In addition, by Equation (6.110), using that for any t ∈ R, 1−min(1, e−t) 6 |t|, there exists C3 > 0
such that for any x ∈ Rd, ‖x‖ 6M2 and η ∈ (0, γ̄3],

RηVη̄(x) 6 Vη̄(x) + bη̄η1B(0,K3)(x) + C3η
3/2

∫
Rd
{1 + ‖x‖2 + ‖z‖4}ϕ(z)dz (6.132)

6 (1− ηη̄mM2
2 /16)Vη̄(x) + ηη̄mM2

2 eη̄M
2
2 /16 + ηbη̄ (6.133)

+ C3ηγ̄
1/2
3

{
1 +M2

2 + C4

}
, (6.134)

where C4 =
∫
Rd ‖z‖

4ϕ(z)dz. Hence, (6.123) holds with

$ = η̄mM2
2 /16, b̄ = η̄mM2

2 eη̄M
2
2 /16 + bη̄ + C3γ̄

1/2
3

{
1 +M2

2 + C4

}
. (6.135)

162 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

6.10 Algorithms

In this section, we have compiled the detailed description of all the algorithms we use in the text:

• Algorithm 4 for i-SIR;

• Algorithm 5 for Ex2MCMC with independent proposals;

• Algorithm 6 for Ex2MCMC with dependent proposals.

The unifying information for the hyperparameter selection in all the considered experiments is given
in Table 6.6.

Input : Sample Yj from previous iteration
Output :New sample Yj+1

1 Set X1
j+1 = Yj and draw X2:N

j+1 ∼ Λ.
2 for i ∈ [N] do
3 compute the normalized weights ωi,j+1 = w̃(Xi

j+1)/
∑N

k=1 w̃(Xk
j+1).

4 end
5 Set Ij+1 = Cat(ω1,j+1, . . . , ωN,j+1).
6 Draw Yj+1 = X

Ij+1

j+1 .
Algorithm 4: Single stage of i-SIR algorithm with independent proposals

Input : Sample Yj from previous iteration
Output :New sample Yj+1

1 Set X1
j+1 = Yj and draw X2:N

j+1 ∼ Λ.
2 for i ∈ [N] do
3 compute the normalized weights ωi,j+1 = w̃(Xi

j+1)/
∑N

k=1 w̃(Xk
j+1).

4 end
5 Set Ij+1 = Cat(ω1,j+1, . . . , ωN,j+1).
6 Draw Yj+1 ∼ R(X

Ij+1

j+1 , ·).
Algorithm 5: Single stage of Ex2MCMC algorithm with independent proposals

Input : Sample Yj from previous iteration
Output : Set of proposals for the current iteration X1:N

j+1

1 Draw Uj+1 ∼ Unif([N]) and set XUj+1

j+1 = Yj

2 Set ZUj+1

j+1 = T−1
θj

(X
Uj+1

j+1)

3 Draw α
Uj+1

j+1 ∼ ν
4 Draw ξj+1 ∼ N

(
α
Uj+1

j+1 Z
Uj+1

j+1 , σ2
Λ

(
1− (α

Uj+1

j+1)2
)

Id
)

5 For i ∈ [N] \ {Uj+1}, draw W i
j+1 ∼ N(0, Idd) and αij+1 ∼ ν and set

Zij+1 = αij+1ξj+1 +
√

1− {αij+1}2W i
j+1.

6 Set X1:N\{Uj+1}
j+1 = Tθj

(
Z

1:N\{Uj+1}
j+1

)
Algorithm 6: Proposal generation procedure for FlEx2MCMC algorithm with dependent proposal

6.11 Numerical experiments

We provide here additional information to the simulation problems of the main document and present
results on new simulation problems.

6.11. NUMERICAL EXPERIMENTS 163

Input :weights θj , batch Yj [1 : K]
Output : new weights θj+1, batch Yj+1[1 : K]

1 for k ∈ [K] do
2 Set X1

j+1[k] = Yj [k].

3 Draw Z
1:N\{1}
j+1 [k] ∼ Λ.

4 Set X1:N\{1}
j+1 [k] = Tθj

(
Z

1:N\{1}
j+1 [k]

)
.

5 for i ∈ [N] do
6 compute the unnormalized weights ω̄i,j+1[k] = w̃θj (X

i
j+1[k]).

7 end
8 Compute ΩN [j + 1, k] =

∑N
i=1 ω̄i,j+1[k] and the normalized weights

ωi,j+1[k] = ω̄i,j+1[k]/ΩN [j + 1, k].
9 Set Ij+1[k] = Cat(ω1,j+1[k], . . . , ωN,j+1[k]).

10 Draw Yj+1[k] ∼ R(X
Ij+1

j+1 [k], ·).
11 end
12 Draw Z̄[1 : K] ∼ Λ.
13 Update θj+1 = θj − γ∇̂L(Yj+1, Z̄, θj).
Algorithm 7: Single stage of FlEx2MCMCwith independent proposals. Steps 1-7 are done in
parallel for independent chains indexed by k but with common values of proposal parameters θj .
Step 9 updates the parameters using the gradient estimate obtained from all the chains.

6.11.1 Metrics

ESTD To compute ESTD, we perform 10 random one-dimensional projections and then perform
Kernel Density Estimation there for reference and produced samples, and take TV-distance between
two distributions over 1D grids of 1000 points. We consider the value averaged over the projections to
show the divergence between the MCMC distribution and the reference distribution.

EEMD We compute the EEMD as the transport cost between sample and reference points in L2

using the algorithm proposed in [Bon+11].

ESS The ESS is computed as follows: for sample {Yt}Mt=1, Yt ∈ Rd of size M , we compute ESS
component-wise. To be specific, for i = 1, . . . , d, we compute

ESSi =
M

1 +
∑M

k=1 ρ
(i)
k

,

where ρ(i)
k =

Cov(Yt,i,Yt+k,i)
Var(Yt,i)

is the autocorrelation at lag k for i−th component. We replace ρk by its
sample counterpart. Then we compute

ESS = d−1
d∑
i=1

ESSi .

6.11.2 Normalizing flow RealNVP

We use RealNVP architecture ([DSB17]) for our experiments with adaptive MCMC. The key item of
RealNVP is a coupling layer, defined as transformation f : RD → RD:

y1:d = x1:d (6.136)
yd+1:D = xd1:D � exp(s(x1:d) + t(x1:d)) (6.137)

164 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

Experiment Method γ N ε α

num
MALA
steps

num
flows

batch
size

num
train
steps lr

Funnel,
Banana

MALA .01
Ex2MCMC .01 10 .5 .9 50

FlEx2MCMC .01 10 .5 .9 50 6 200 200 .005

Bayesian
Logistic
Regression

i-SIR 5
MALA .01

Ex2MCMC .01 5 .5 .9 1
FlEx2MCMC .01 5 .5 .9 1 4 100 200 .01

Gaussian
distribution

i-SIR 10
Ex2MCMC 10 1. .95 0

Mixture of (M.)
two Gaussian
distributions

i-SIR 10
MALA .01

Ex2MCMC .01 5 .5 .9 1
FlEx2MCMC .01 5 .5 .9 1 2 100 200 0.01

M. 25 Gaussian
distributions

MALA .001
Ex2MCMC .001 10 1. .9 1

M. 243 Gaussian
distributions

MALA .001
Ex2MCMC .001 10 .9 .99 1

Swissroll MALA .001
Ex2MCMC .001 10 .5 .9 1

Allen-Cahn
equation

([GRV21]) .001 10 2 100 10k .001
Ex2MCMC .001 10 .5 .9 10 2 100 10k .001

Ill-conditioned
Gaussian
distribution

MALA .01
Ex2MCMC .01 10 10

FlEx2MCMC .01 10 .5 .9 10 2 100 10k .001

Table 6.6: Hyperparameters used in experiments.

6.11. NUMERICAL EXPERIMENTS 165

where s and t are some functions from RD to RD. It is clear then that the Jacobian of such transformation
is triangular matrix with nonzero diagonal terms. We use fully connected neural networks to parameterize
the functions s and t.

In all experiments with normalizing flows, we use optimizer Adam ([KB14]) with β1 = 0.9, β2 = 0.999
and weight decay 0.01 to avoid overfitting.

6.11.3 Adaptive strategy for tuning the stepsize in the MALA algorithm

In all our experiments, except for the Allen-Cahn equation, we use adaptive strategy for the stepsize in
MALA, Ex2MCMC and FlEx2MCMC algorithms to keep acceptance rate close to α = 0.5: we measure
the average acceptance rate µacc during sampling, and increase the stepsize if µacc > α or decrease it if
µacc < α with some tolerance threshold. The scheme is described in Algorithm 8. In practice, we set
tolerance δ = 0.03, factor s = 1.05.

Input : average acc. rate µacc, target acc. rate α, current stepsize γ, tolerance δ, factor s
Output : new stepsize γ′

1 if µacc − α > δ then
2 γ′ = γs
3 else if α− µacc > δ then
4 γ′ = γ/s
5 else
6 γ′ = γ

Algorithm 8: Adaptive strategy for stepsize.

Note that in all experiments, wherever it is not said otherwise, we set noise scale coefficient in
MALA kernel to

√
2γ, where γ is step size.

6.11.4 High-dimensional Gaussian distribution sampling

We consider the problem of sampling from a high-dimensional standard Normal distribution N (0, Idd)
and the proposal distribution N (0, 2 Idd) for different problem dimension d ∈ [30; 300]. The goal of the
experiment is to show the efficiency of correlated proposals for i-SIR . We apply Ex2MCMC algorithm
with ε = 1 and without rejuvenation kernel, as it is described in Algorithm 6. We compute empirical
estimates of mean and variance, and report confidence intervals for them based on 20 independent runs
of each algorithm. We report empirical estimates of mean and variance, and the ESS. We perform 103

burn-in steps for each of the algorithms, and then compute the metrics over the next 5× 103 samples.
Other experimental details are provided in Table 6.6.

6.11.5 Mixture of 25 Gaussian distributions in 2d

The details on experiments with mixture of 25 Gaussian distributions were moved to Section 6.11.12,
see also Table 6.6.

6.11.6 Distributions with complex geometry

In this section, we study the sampling quality from high-dimensional distributions, whose density levels
have high curvature (Banana shaped and Funnel distributions, details below). With such distributions,
standard MCMC algorithms like MALA or i-SIR, fail to explore fully the density support. In the
examples below, we sample reference points with HMC-type algorithm NUTS ([HG+14b]). For each of
examples we produce 1000 reference points from the target distribution and consider them as reference
points to compute ESTV and EMD for samples from MALA, Ex2MCMC and FlEx2MCMC. For every
target distribution, we set proposal to be the standard normal distribution N (0, Idd). As we do 50

166 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

rejuvenation steps in Ex2MCMCand FlEx2MCMCalgorithms, we take every 50th point from MALA
samples to compute ESS. We set proposal as standard normal distribution for all target distributions.

Symmetric banana-shaped distribution Following [HST99], we sample from the so-called "Banana-
shape" distribution. For x ∈ R2d, the density of the symmetric banana-shaped distribution is given
by

p(x) =
1

Z
exp

(
d∑
i=1

−(x2i−1 − x2
2i)

2/ν − (x2i−1 − 1)2

)
, (6.138)

with Z being a normalizing constant and ν > 0. In our examples we set ν = 0.2.

Asymmetric banana-shaped distribution For x ∈ R2d, the density of the asymmetric banana-
shaped distribution is given by

p(x) =
1

Z
exp

(
d∑
i=1

−(x2i−1 − x2
2i)

2/ν − (x2i − 1)2

)
, (6.139)

with Z being a normalizing constant and ν > 0. In our examples we set ν = 0.2.

Funnel distribution For x ∈ R2d the density of the funnel distribution is given by

p(x) =
1

Z
exp

(
− x2

1

2a2
− e−2bx1

2d∑
i=2

{x2
i − log d+ 2bx1}

)
, (6.140)

where Z is a normalizing constant. We set a = 1, b = 0.5.
Results for both types of banana-shaped distributions and for the funnel distribution are summarized

in Figure 6.13 and in Figure 6.11, respectively. We report the values of ESTV, EEMD, and ESS metrics
and their dependence on the problem dimension d. Clearly, FlEx2MCMC algorithm outperforms both
MALA and Ex2MCMC with independent proposals. We visualize projections of generated samples
on first two coordinates for the banana-shaped and funnel examples in Figure 6.12 and Figure 6.10,
respectively. They illustrate how well Ex2MCMC and FlEx2MCMC can explore the support compared
to MALA.

6.11.7 Bayesian Logistic regression

The training set D consists of pairs (x, y) where x = (x(0), . . . , x(d−1)) ∈ Rd and labels y ∈ {−1, 1}.
In practice, the first coordinate of x represents the bias term, i.e.we have x(0) = 1. The likelihood
for a pair is p(y | x, θ) = logit(y 〈x, θ〉). Given a prior distibution p(θ), we sample from the posterior
distribution p(θ | D) and compute the predictive posterior p(y | x,D) =

∫
p(y | x, θ)p(θ | D)dθ for

(x, y) ∈ Dtest. We approximate p(y | x,D) using the Monte Carlo estimate 1
n

n∑
i=1

p(y | x,D, θi), where θi
is a sample of p(θ | D) obtained using different MCMC samplers. We take a normal prior distribution
p0(θ) = N (0, σ2Id) with σ2 = 20. We present results for the following datasets:

Covertype dataset consists of 581k instances of dimension 54, and we arbitrarily classes 3 and 5
from the original 7 classes to build a binary classification task. We used 1.5k steps for burn-in and
sampling phases.

EEG dataset consists of 15k instances of dimension 15. We used 1.5k steps for burn-in and sampling
phases.

Digits dataset consists of 1.8k instances of dimension 64, and we kept arbitrarily classes 5 and 6
from the original 10 classes for binary classification task. We used 1.5k steps for burn-in and sampling
phases.

We randomly take 0.8 of the dataset for the train set and the rest for the test set. We remove
outliers from training set using Isolation Forest classifier.

6.11. NUMERICAL EXPERIMENTS 167

10 20
dim

0.0

0.5

1.0

ca
pt

ur
ed

 2
 m

od
es

10 15 20 25
dim

0.1

0.2

ES
S

10 15 20 25
dim

20

40

ES
S/

s

10 15 20 25
dim

0.25

0.50

0.75

HQ
R i-SIR

MALA
Ex2MCMC
FlEx2MCMC

Figure 6.9: Sampling from mixture of two Gaussian distributions N (−1.5, Id), N (1.5, Id) in high
dimensions.

6.11.8 Mixture of two Gaussian distributions

We consider here the task of sampling from a mixture of two Gaussian distributions in different
dimensions. The target density is

p(x) =
1

2
g(x;µ, σ2 Idd) +

1

2
g(x;−µ, σ2 Idd) , where µ = (1.5, 1.5, . . . , 1.5) ∈ Rd , σ2 = 1 ,

and we set the proposal distribution to be N (0, 2 Idd). We perform 200 independent starts for each
method for each dimension in [10, 12, . . . , 30] to compute metrics and average them across different
starts. We put more details on hyperparameters used in table 6.6. We compute ESS per second (ESS/s)
as a product of ESS and size of obtained sample (900) divided by sampling time in seconds. The result
of this experiment is presented in Figure 6.9. Note that, despite the ESS of MALA is good, MALA
always explores only one mode of the mixture.

6.11.9 Allen-Cahn equation

In this experiment, we consider the task of sampling from the invariant distribution of the Allen-Cahn
stochastic differential equation ([AC75]). We borrow the setting from the paper [GRV21] in which
they propose to use normalizing flows to enhance MCMC sampling from distributions with meta-stable
states. Allen-Cahn equation is a SDE defined in terms of a random field ϕ : [0, 1]→ R that satisfies

∂tϕ = a∂2
sϕ+ a−1(ϕ− ϕ3) +

√
2β−1η(t, s) , (6.141)

168 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

0 5 10
60
40
20

0
20
40
60

0 5 10
60
40
20

0
20
40
60

0 5 10
60
40
20

0
20
40
60

Figure 6.10: Funnel distribution, dim 15: projection of resulted samples on first two coordinates. From
left to right: MALA, Ex2MCMC, FlEx2MCMC

5 10 15 20
dim

0.0

0.5

Sliced TV

5 10 15 20
dim

0.0

0.2

0.4
ESS

5 10 15 20
dim

102

104

106 Euclidean EMD

MALA
Ex2MCMC
FlEx2MCMC

Figure 6.11: Sampling from Funnel distribution.

0 2 4
2

1

0

1

2

0 2 4
2

1

0

1

2

0 2 4
2

1

0

1

2

Figure 6.12: Symmetric banana-shaped distribution, dimension d = 50: projection of resulted samples
on first two coordinates. From left to right: MALA, Ex2MCMC, FlEx2MCMC

10 20 30 40 50
dim

0.2

0.4

Sliced TV
MALA
Ex2MCMC
FlEx2MCMC

10 20 30 40 50
dim

0.1

0.2

0.3
ESS

MALA
Ex2MCMC
FlEx2MCMC

10 20 30 40 50
dim

100

101

Euclidean EMD

MALA
Ex2MCMC
FlEx2MCMC

Figure 6.13: Sampling from symmetric banana-shaped distribution.

6.11. NUMERICAL EXPERIMENTS 169

where a > 0, β are parameters, s ∈ [0, 1], η is a spatio-temporal white noise. Following [GRV21], we
impose boundary conditions on ϕ : ϕ(s = 0) = ϕ(s = 1) = 0. The invariant measure of the stochastic
Allen-Cahn equation is the Gibbs measure associated with the Hamiltonian

U(ϕ) = β

1∫
0

[
a

2
(∂sϕ)2 +

1

4a
(1− ϕ(s)2)2

]
ds . (6.142)

The Hamiltonian has two global well separated minima ϕ+ and ϕ−, making it very challenging to sample
from the invariant distribution using MCMC methods. Therefore authors propose to use informed base
measure with the following Hamiltonian as a proposal

UB(ϕ) = β

∫ 1

0

[
a

2
(∂sϕ)2 +

1

2a
ϕ2

]
ds . (6.143)

To perform sampling, we discretize the field on a uniform grid taking 100 points of spatial variable s.
Therefore the dimension of space we sample on is 100.

We set a = 0.1, β = 20. We use RealNVP with 2 flows and hidden layer size 50. Other details are
provided in the Table 6.6.

6.11.10 Sampling from Ill-Conditioned Gaussian distribution

In this experiment, we consider the task of sampling from zero-centered Gaussian distribution with
ill-conditioned covariance being a diagonal matrix with elements spaced log-linearly between 10−2 and
102. We set the dimension to 50. Figure 6.14 shows autocorrelation time versus sampling iterations. We
perform 50 independent runs of each method to compute autocorrelations and average accross different
chains. The experimental details are provided in the Table 6.6.

6.11.11 Sampling from GAN as an Energy-Based Model

In our experiments, we closely follow the exposition of [Che+20a, Section 5], albeit we were not able
to exactly reproduce the numbers reported in this paper. We consider the task of sampling in the
latent space of learnt GAN model, as presented in [Che+20a]. The crux of the approach is that
under some assumptions on the discriminator being close to the optimal one (given by Bayes rule,
see [Che+20a]), sampling in latent space from the distribution p(z) = p0(z)

Z exp (logit(D(G(z)))) is
equivalent to sampling from the data distribution, where p0(z) is a proposal distribution for Generator,
G is a Generator and logit is the inverse sigmoid function.

6.11.12 GANs as energy-based models: artificial datasets

We tackle in this section the task of sampling artificial datasets. We set the proposal distribution to
the standard normal distribution for all datasets.

We pay particular attention to mixture of Gaussian distributions and Swissroll examples. Similar
setup is considered at [Aza+18; Tur+19b; Tan19]. We follow the same experimental setting as provided
at [Tan19] and [Che+20a, Section 5.1]. The main difference compared to [Tan19] is that the prior
distribution p0 is a multivariate Gaussian (instead of a uniform).

Mixture of 25 Gaussian distributions We build a dataset of points sampled from a mixture of 25
Gaussian distributions in dimension 2, as in [Tur+19b]. All Gaussian distributions have scale parameter
σ = 0.05, and the coordinates of the means of the Gaussian distributions {µi}25

i=1 are distributed on a
uniform grid: µi ∈ {−2,−1, 0, 1, 2}2. From this dataset, we train a WGAN ([ACB17]). We use 4-layer
MLP architectures with hidden dimension 128 and 256 for Generator and Discriminator respectively.
We set the dimension of the latent space to d = 2. We perform 50 independent runs for each method
and average metrics across runs. The other experimental details are presented in the Table 6.6.

170 CHAPTER 6. EX2MCMC: SAMPLING THROUGH EXPLORATION EXPLOITATION

Table 6.7: GAN sampling from mixture of Gaussian distributions

Model

Single chain, 25G Multiple chains, 25G Single chain, 243G Multiple chains, 243G

std # modes EMD std # modes EMD std # modes EMD std # modes EMD

[Goo+14b] .058 25 .064 .058 25 .064 .040 34.8 3.86 .040 34.8 3.86
[Che+20a] .036 1 6.97 .043 25 .062 .022 1 30.96 .039 98 4.20
MALA .050 25 .2 .058 25 .058 .030 3.5 24.03 .040 85.8 3.80
Ex2MCMC .055 25 .18 .056 25 .18 .030 62.9 3.78 .039 89.4 3.60

0 1000 2000 3000 4000
Sampling iterations

0.0

0.2

0.4

0.6

0.8

1.0
Au

to
co

rre
la

tio
n

MALA
Ex2MCMC
FlEx2MCMC

Figure 6.14: Ill-conditioned Gaussian: Autocorrelations vs. sampling iteration.

Mixture of 243 Gaussian distributions To train GAN we construct a dataset from points dis-
tributed according to a mixture of 243 Gaussian distributions in dimension 5. All Gaussian distributions
have scale parameter σ = 0.05, and the means of the Gaussian distributions {µi}243

i=1 are distributed on
a uniform grid: µi ∈ {−2, 0, 2}5. We set the dimension of the latent space to d = 5. We perform 50
independent runs for each method and average metrics across runs. We use 3-layer MLP architectures
for both Generator and Discriminator with hidden dimension 256 and 512 respectively.

Swissroll Swissroll is a popular dataset of points in 2d distributed along the spiral with some noise.
We set the scale factor of noise σ = 0.05. We set the dimension of the latent space to d = 2. To train
WGAN we use 3-layer MLP architectures for both Generator and Discriminator with hidden dimension
128 and 256 respectively.

6.11.13 Sampling GANs as energy-based model on CIFAR-10.

The details on experiments with GANs on CIFAR-10 were moved to Section 6.6.

Chapter 7

Approximate Inference in Bayesian Deep
Learning

Presentation of the challenge and the baselines

As introduced above Section 2.2.1, the use of Bayesian neural networks might be crucial for a large
scale deployment of deep learning. However, it is not yet clear how to approximate and how to assess
the aquality of the approximation of the posterior of a Bayesian neural network.

Recently, [Izm+21] sheds more light on this matter. In this paper, authors propose to launch very
long exact HMC chain (thus with a considerable computational budget) on the posterior of different
deep neural networks with different datasets, and present criteria to assess convergence of said chains.
The idea is to show how effective an exact – or almost exact – approximation of the posterior can
be, and how different approximate inference schemes can compare with it, in terms of a few metrics
(such as test accuracy, and agreement and total variation or Wasserstein distance of the predictive
distributions produced by different competitors compared to this HMC baseline). A NeurIPS 2021
competition (https://izmailovpavel.github.io/neurips_bdl_competition/) opened afterwards
this comparison to different solutions that could be proposed by competitors participating.

We present here the solution based on Gaussian Stochastic Weight Averaging and Langevin dynamics
developed for this competition.

Let us first present a snapshot of different approaches to approximate inference in Bayesian Deep
Learning. The base principle is the simple Stochastic Gradient Descent approach. This consists in an
optimization run with stochastic mini batching of the loss (2.7). This provides thus stochastic estimates
of the gradient of the true loss, and the chain of weights {θk}06k6K obtained by such a procedure define
a Markov chain.

Considering this optimization sequence as a Markov chain, a natural idea from [Izm+18a] is to
consider rather the average of the last points of this sequence as a final sample from the posterior,
that is the point θ∗ ∈ RD effectively used is θ∗ = b−1

∑K
i=K−b+1 θi. This leads, as the authors put

it, to “wider optima”, which ensure a better generalization of the model. Generally, MCMC methods
have been used to approximate the posterior of Bayesian neural networks, typically using “full-batch”
HMC in the simplest cases [Nea12; CJ21; Wen+20], or stochastic gradient based methods [WT11;
ASW14; CFG14; MCF15; AKW12; Din+14; Izm+18b; Zha+19; MHB17; WI20; GF21], typically the
stochastic gradient Langevin descent (SGLD) [WT11] or the stochastic gradient Hamiltonian Monte
Carlo [CFG14].

An other classical idea is to use Variational inference to approximate the posterior distribution. If
one specifies a variational family of distributions Q, we can optimize a lower bound to find the best
approximating distribution w.r.t. the KL divergence.

Typically, one chooses Q to be the class of mean-field Gaussian distributions over the set of weights
θ, [Gra11], even though the mean field family can be augmented with normalizing flows, [LW17].

Another practical and popular way to enhance this family distribution is to use dropout, that is,

171

https://izmailovpavel.github.io/neurips_bdl_competition/

172 CHAPTER 7. APPROXIMATE INFERENCE IN BAYESIAN DEEP LEARNING

adding a Bernoulli probability r of setting each of the weights in θ to 0 [Sri+14; GG16; KG17; GHK17].
Now, one can thus write the effective variational family as

q(θ) =
D∏
i=1

Ber(r)N(θi;µi, σi) . (7.1)

This provides an effective way of approximating the posterior distribution in Bayesian neural networks.
In general, however, one can reinterpret variational inference as a version of stochastic optimization,

see [MHB17; Kha+18; HM20].
An other simple yet effective method is given by the Gaussian Stochastic Weight Averaging

(SWAG) method [Mad+19]. This method generalizes the Stochastic Weight Averaging which just
considers as an effective sample an average of the end of the SGD chain by adding as well an estimate
of the covariance at the end of the chain. Typically, given an SGD chain, a point θ∗ is sampled
according to the Gaussian distribution N(µ∗,Σ∗), where µ∗ = b−1

∑K
i=K−b+1 θi, and Σ∗ is computed

as a diagonal + low rank approximation of the empirical covariance matrix of the samples: Write
σ∗ = (n− 1)−1

∑K
i=K−b+1(θi − µ∗)2, and for i ∈ {K − b . . . ,K}, Xi = (θi − µ∗)� σ∗, where � denotes

the coordinate-wise division, and X̄ = (XK−b+1, . . . , XK) the D × b matrix.
Let t denote the rank for the low rank approximation of the covariance matrix, X̄ = UDV T the

Singular Value Decomposition (SVD), where U is a D ×D matrix, D a D × b diagonal matrix, and V
a b× b matrix. Note now X̄t = UtDtV

T
t the truncated SVD with the t largest singular values, where Ut

is a D × t matrix, Dt a t× t matrix and Vt a b× t matrix.
The approximate covariance is then given by

Σ∗ = diag (σ∗) + UtD
2
tU

T
t ,

the diagonal plus low rank approximation of the empirical covariance.

Our methodology

We extend this simple idea for our solution to the NeurIPS competition. First of all, we extend the
computation of the covariance matrix by adding three different options. We indeed force the factorization
of the covariance matrix of the weights by computing this diagonal plus low rank approximation either
for all the weights at once, or for weights layer by layer (thus forcing independence of the different
layers), or batching the weights when the layer is large, that is forcing an independence of the weights
by blocks of size bθ.
Our algorithm then consists of three different phases:

• First, run n1 optimization chains, featuring typically the Adam [KB14] optimizer, targetting the
loss (2.5). We use typically a cyclical learning rate here, following [Smi17; Zha+19] to target
large valleys of the posterior distribution.

• Then, starting from the n1 “warm” points obtained by the previous optimization runs, run n2

SGLD chains with an RMSProp preconditioner [Li+16] (Typically, n2 = i× n1, thus starting i
chains from each “warm” point). Both those phases are given a similar computational budget.

• Then, compute mean and covariance for the Gaussian distribution approximating each SGLD
chain, as described above, for each of those n2 chains and sample the approximate posterior
distribution with the uniform Gaussian mixture with n2 modes (or even 3n2 modes when the
mixture is computed with all different options for the covariance matrix).

This algorithm was then evaluated on three different tasks: Classification on the CIFAR-10 and
MedMNIST[YSN21] datasets, and regression on the UCI Gap dataset as in [Foo+19; HA15]. A very
long run of the HMC algorithm, following [Izm+21], had been done for approximating the posterior

173

distribution of the weights, thus providing a “ground-truth” for the predictive distribution given some
test set, which competitors had to approximate. This approximation was then measured using a top-1
agreement metric and a total variation distance for classification task, as well as a Wasserstein distance
computed for regression tasks.

There were two tracks on this competition, a full track featuring all of the tasks described before,
and a light one featuring only CIFAR-10 classification task. Our method arrived second on both.

174 CHAPTER 7. APPROXIMATE INFERENCE IN BAYESIAN DEEP LEARNING

Part III

Contributions: Generative models

175

Chapter 8

MetFlow: A New Efficient Method for
Bridging the Gap between Markov Chain
Monte Carlo and Variational Inference

Achille Thin1, Nikita Kotelevskii2, Jean-Stanislas Denain1, Leo Grinsztajn1,
Alain Durmus3, Maxim Panov4, Eric Moulines1

Abstract

In this contribution, we propose a new computationally efficient method to combine Variational Inference
(VI) with Markov Chain Monte Carlo (MCMC). This approach can be used with generic MCMC kernels,
but is especially well suited to MetFlow, a novel family of MCMC algorithms we introduce, in which
proposals are obtained using Normalizing Flows. The marginal distribution produced by such MCMC
algorithms is a mixture of flow-based distributions, thus drastically increasing the expressivity of the
variational family. Unlike previous methods following this direction, our approach is amenable to the
reparametrization trick and does not rely on computationally expensive reverse kernels. Extensive
numerical experiments show clear computational and performance improvements over state-of-the-art
methods.

8.1 Introduction

One of the biggest computational challenge these days in machine learning and computational statistics
is to sample from a complex distribution known up to a multiplicative constant. Indeed, this problem
naturally appears in Bayesian inference [Rob07] or generative modeling [KW13b]. Very popular methods
to address this problem are Markov Chain Monte Carlo (MCMC) algorithms [Bro+11] and Variational
Inference (VI) [WJ+08]. The main contribution of this paper is to present a new methodology to
successfully combine these two approaches mitigating their drawbacks and providing the state-of-the-art
sampling quality from high dimensional unnormalized distributions.

Starting from a parameterized family of distributions Q = {qφ : φ ∈ Φ ⊂ Rq}, VI approximates the
intractable distribution with density π on RD by maximizing the evidence lower bound (ELBO) defined
by

L(φ) =

∫
log
(
π̃(z)/qφ(z)

)
qφ(z)dz , (8.1)

1Centre de Mathématiques Appliquées, UMR 7641, Ecole polytechnique, France
2CDISE, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
3Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France
4CS Departement, HSE University, Russian Federation

177

178 CHAPTER 8. METFLOW: MCMC & VI

using an unnormalized version π̃ of π, i.e. π = π̃/Cπ setting Cπ =
∫
RD π̃(z)dz. Indeed, this approach

consists in minimizing φ 7→ KL(qφ|π) since L(φ) = log(Cπ)−KL(qφ|π). The design of the family Q of
variational distributions has a huge influence on the overall performance – more flexible families provide
better approximations of the target.

Recently, it has been suggested to enrich the traditional mean field variational approximation by
combining them with invertible mappings with additional trainable parameters. A popular implementa-
tion of this principle is the Normalizing Flows (NFs) approach [DSB16; RM15a; Kin+16b] in which a
mean-field variational distribution is deterministically transformed through a fixed-length sequence of
parameterized invertible mappings. NFs have received a lot of attention recently and have proven to be
very successful for VI and in particular for Variational Auto Encoder; see [KPB19; Pap+19] and the
references therein.

The drawback of variational methods is that they only allow the target distribution to be approxi-
mated by a parametric family of distributions. On the contrary, MCMC are generic methods which
have theoretical guarantees [RC13a]. The basic idea behind MCMC is to design a Markov chain (zk)k∈N
whose stationary distribution is π. Under mild assumptions, the distribution of zK converges to the
target π as K goes to infinity. Yet, this convergence is in most cases very slow and therefore this class
of methods can be prohibitively computationally expensive.

The idea to “bridge the gap” between MCMC and VI was first considered in [SKW15b] and has
later been pursued in several works; see [WKS16], [Hof+19] and [CDS18a] and the references therein.
In these papers, based on a family of Markov kernels with target distribution π and depending on
trainable parameters φ, the family Q consists in the marginal distribution obtained after K iterations
of these Markov kernels.

In this paper, we develop a new approach to combine the VI and MCMC approaches. Compared
to [SKW15b] and [WKS16], we do not need to extend the variational approximation on the joint
distribution of the K samples of the Markov chain and therefore avoid to introduce and learn reverse
Markov kernels.

Our main contributions can be summarized as follows:

1) We propose a new computationally tractable ELBO which can be applied to most MCMC algorithms,
including Metropolis-Adjusted Langevin Algorithm - MALA - and Hamiltonian Monte Carlo -HMC-.
Compared to [Hof17], the Markov kernels can be jointly optimized with the initial distribution q0

φ.

2) We propose an implementation of our approach MetFlow using a new family of ergodic MCMC
kernels in which the proposal distributions are constructed using Normalizing Flows. Then, combining
these Markov kernels with classical mean-field variational initial distributions, we obtain variational
distributions with more expressive power than NF models, at the reasonable increase of the computational
cost. Moreover, unlike plain NFs, we guarantee that each Markov kernel leaves the target invariant and
that each iteration improves the distribution.

3) We present several numerical illustrations to show that our approach allows us to meaningfully
trade-off between the approximation of the target distribution and computation, improving over
state-of-the-art methods.

Our paper is organized as follows. In Section 8.2, we start by describing our new methodology. Then,
in Section 8.3, we introduce MetFlow, a class of “deterministic” MCMC algorithm, taking advantage
of the flexibility of Normalizing Flows as proposals. Section 8.4 discusses the related work in more
detail. The benefits of our method are illustrated through several numerical experiments in Section 9.4.
Finally, we discuss the outcomes of the study and some future research directions in Section 8.6.

8.2. A NEW COMBINATION BETWEEN VI AND MCMC 179

8.2 A New Combination Between VI and MCMC

8.2.1 Basics of Metropolis-Hastings

The Metropolis Hastings (MH) algorithm to sample a density π w.r.t. the Lebesgue measure on RD
defines a Markov chain (Zk)k∈N with stationary distribution π as follows. Conditionally to the current
state Zk ∈ RD, k ∈ N, we a proposal Yk+1 = Tφ(Zk, Uk+1) is sampled where (Uk)k∈N∗ is a sequence of
i.i.d. random variables valued in a measurable space (U,U), with density h w.r.t. to a σ-finite measure µU,
and Tφ : RD×U→ RD is a measurable function, referred to as the proposal mapping, and parameterized
by φ ∈ Φ. In this work, φ collectively denotes the parameters used in the proposal distribution, and (Uk)
is referred to as the innovation noise. Then, Yk+1 is accepted with probability αMH

φ

(
Zk, Tφ(Zk, Uk+1)

)
,

where αMH
φ : R2D → [0, 1] is designed so that the resulting Markov kernel, denoted by Mφ,h, is reversible

w.r.t. π, i.e. satisfies the detailed balance π(dz)Mφ,h(z,dz′) = π(dz′)Mφ,h(z′,dz). With this notation,
Mφ,h can be written, for z ∈ RD, A ∈ B(RD), as

Mφ,h(z,A) =

∫
U
h(u)Qφ

(
(z, u),A

)
µU(du) , (8.2)

where {Qφ : φ ∈ Φ} is the family of Markov kernels given for any z ∈ RD, u ∈ U, A ∈ B(RD), by:

Qφ((z, u),A) = αφ(z, u)δTφ(z,u)(A) +
{

1− αφ(z, u)
}
δz(A) . (8.3)

In this definition, δz stands for the Dirac measure at z and {αφ : RD × U→ [0, 1] , φ ∈ Φ} is a family
of acceptance functions related to the MH acceptance probabilities by αφ(z, u) = αMH

φ

(
z, Tφ(z, u)

)
.

To illustrate this definition, consider first the symmetric Random Walk Metropolis Algorithm
(RWM). In such case, U = RD, µU is the Lebesgue measure, and g is the D-dimensional standard
normal density. The proposal mapping is

TRWM
φ (z, u) = z + Σ

1/2
φ u, (8.4)

where {Σφ, φ ∈ Rq} is a parametric family of positive definite matrices, and the acceptance function is
given by αRWM

φ (z, u) = 1 ∧
(
π(TRWM

φ (z, u))/π(z)
)
.

Consider now the Metropolis Adjusted Langevin Algorithm (MALA); see [Bes94b]. Assume that
z 7→ log π(z) is differentiable and denote by ∇ log π(z) its gradient. The proposal mapping and the
associated acceptance function for MALA algorithm are given by

TMALA
φ (z, u) = z + Σφ∇ log π(z) +

√
2Σ

1/2
φ u , (8.5)

αMALA
φ (z, u) = 1 ∧

π
(
TMALA
φ (z, u)

)
gφ
(
TMALA
φ (z, u), z

)
π(z)gφ

(
z, TMALA

φ (z, u)
) ,

where gφ(z1, z2) = |Σφ|−1/2g
(
Σ−1/2

φ (z2 − TMALA
φ (z1, 0))

)
is the proposal kernel density.

8.2.2 Variational Inference Meets Metropolis-Hastings

Let K ∈ N∗, {ξ0
φ : φ ∈ Φ} on RD a parametric family of distributions and {hi}Ki=1 density functions

w.r.t µU. Consider now the following variational family

Q = {ξKφ = ξ0
φMφ,h1 · · ·Mφ,hK : φ ∈ Φ} , (8.6)

obtained by iteratively applying to the initial distribution ξ0
φ the Markov kernels (Mφ,hi)

K
i=1.

The objective of VI approach [WJ+08] is to minimize the Kullback-Leibler (KL) divergence KL(ξKφ |π)
w.r.t. the parameter φ ∈ Φ to find the distribution which best fits the target π. For any φ ∈ Φ, u ∈ U
and z ∈ RD, denote by Tφ,u(z) = Tφ(z, u), αφ,u(z) = αφ(z, u) and similarly for any A ∈ B(RD),
Qφ,u(z,A) = Qφ

(
(z, u),A

)
.

180 CHAPTER 8. METFLOW: MCMC & VI

The key assumption in this section is that for any φ ∈ Φ and u ∈ U, Tφ,u is a C1 diffeomorphism.
This property is satisfied under mild condition on the proposal. In particular, this holds for RWM
and MALA associated with the proposal mappings TRWM

φ,u and TMALA
φ,u . Note that for MALA, log π

has to be continuously differentiable with Lipschitz gradient and supφ∈Φ ‖Σφ‖ has to be small enough
see Proposition 69 in the supplement. It holds also for Hamiltonian Monte Carlo at the expense of
extending the state space to include a momentum variable, see the supplementary paper Section 8.7.4
and Section 8.8.3. However, it is in general not needed to specify a valid MCMC procedure. For a
C1(RD,RD) diffeomorphism ψ, define by Jψ(z) the absolute value of the Jacobian determinant at
z ∈ RD.

Lemma 64. Let (u, φ) ∈ U × Φ. Assume that ξ0
φ admits a density q0

φ w.r.t. the Lebesgue measure.
Assume in addition Tφ,u is a C1 diffeomorphism. Then, the distribution ξ1

φ(·|u) =
∫
Rd q

0
φ(z0)Qφ,u(z0, ·)dz0

has a density w.r.t. the Lebesgue measure given by

q1
φ(z|u) = αφ,u

(
T−1
φ,u(z)

)
q0
φ

(
T−1
φ,u(z)

)
JT−1

φ,u
(z) +

{
1− αφ,u(z)

}
q0
φ(z) , (8.7)

and ξ1
φ has a density given by m1

φ(z) =
∫
q1
φ(z|u)h(u)µU(du).

Proof. Let f be a nonnegative measurable function on RD. (8.7) follows from the change of variable
z1 = Tφ,u(z0): ∫

RD
f(z)q0

φ(z0)Qφ,u(z0, dz)

=

∫
RD

[
q0
φ(z0)

{
αφ,u(z0)f

(
Tφ,u(z0)

)
+
(
1− αφ,u(z0)

)
f(z0)

}]
dz0 ,

=

∫
RD

[
{αφ,u

(
T−1
φ,u(z1)

)
q0
φ(T−1

φ,u(z1))JT−1
u

(z1)

+ (1− αφ,u(z1))q0
φ(z1)}f(z1)

]
dz1 .

An induction argument extends this property to the K-th marginal ξKφ . Let us define T 0 = Id.
For a family {Ti}Ki=1 of mappings on RD and 1 6 i 6 k < K, define ©k

j=iTj = Ti ◦ · · · ◦ Tk and for a
sequence {hi}Ki=1 of innovation noise densities w.r.t. µU, define h1:K(u1:K) =

∏K
i=1 hi(ui). Finally, set

α1
φ,u(z) = αφ,u(z) and α0

φ,u(z) = 1− αφ,u(z).

Proposition 65. Assume that for any (u, φ) ∈ U × Φ, Tφ,u is a C1 diffeomorphism and ξ0
φ admits

a density q0
φ w.r.t. the Lebesgue measure. For any {ui}Ki=1 ∈ UK , the distribution ξKφ (· | u1:K) =

ξ0
φQφ,u1 · · ·Qφ,uK has a density qKφ given by

qKφ (z|u1:K) =
∑

a1:K∈{0,1}K
qKφ (z, a1:K |u1:K) , (8.8)

where

qKφ (z, a1:K |u1:K) =
K∏
i=1

αaiφ,ui
(
©K
j=iT

−aj
φ,uj

(z)
)
q0
φ

(
©K
j=1T

−aj
φ,uj

(z)
)
J
©K
j=1T

−aj
φ,uj

(z) . (8.9)

In particular, for a sequence {hi}Ki=1 of innovation noise densities, ξKφ (8.6) has a density w.r.t. the
Lebesgue measure, explicitly given, for any z ∈ RD, by

qKφ (z) =

∫
UK

{
qKφ (z|u1:K)h1:K(u1:K)

}
dµ⊗KU (u1:K) . (8.10)

8.2. A NEW COMBINATION BETWEEN VI AND MCMC 181

We can now apply the VI approach to the family Q defined in (8.6). Consider a family of inference
function

{ρ(a1:K , u1:K | z) : z ∈ RD, a1:K ∈ {0, 1}K , u1:K ∈ UK} .
This family may depend upon some parameters, implicit in this notation. As shown below, our objective
is to take very simple expressions for those functions. We define our ELBO Laux(φ), using now the
extended space (zK , a1:K , u1:K), by

Laux(φ) =
∑

a1:K∈{0,1}K

∫
h1:K(u1:K)qKφ (zK , a1:K |u1:K)

× log

(
π̃(zK)ρ(a1:K , u1:K |zK)

qKφ (zK , a1:K |u1:K)h1:K(u1:K)

)
dzKdµ⊗KU (u1:K) . (8.11)

Note that Laux is a lower bound of L expressed in (8.1) since defining

qKφ (z, a1:K , u1:K) = qKφ (z, a1:K |u1:K)h1:K(u1:K)

and qKφ (a1:K , u1:K |z) = qKφ (z, a1:K , u1:K)/qKφ (z), we obtain

Laux(φ) = L(φ)−
∫
RD

qKφ (zK)DKLq
K
φ (•|zK)ρ(•|zK)dzK ,

where DKLq
K
φ (•|zK)ρ(•|zK) denotes the KL divergence between qKφ (a1:K , u1:K |zK) and ρ(a1:K , u1:K |zK).

We specify the inference functions ρ. In particular, a simple choice is ρ(a1:K , u1:K |z) = r(a1:K |z, u1:K)h1:K(u1:K),
where r is a similar family of inference function on {0, 1}. This architecture is based on the repre-
sentation of the Markov kernel (8.3) we built and simplifies our ELBO. In the following, we always
assume the form of such inference function. Note here that the key step of our approach for defining
Laux is to rely on the representation (8.2), allowing us to write explicitly our marginals qKφ compared
to [SKW15b].

The ELBO Laux can be optimized w.r.t. φ, typically by stochastic gradient methods, which
requires an unbiased estimator of the gradient ∇Laux(φ). Such estimator can be obtained using the
reparameterization trick [RMW14]. The implementation of this procedure is a bit more involved in
our case, as the integration is done on a mixture of the components qKφ (z, a1:K |u1:K). To develop an
understanding of the methodology, we consider first the case K = 1. Denote by ϕ the density of
the D-dimensional standard Gaussian distribution. Suppose for example that we can write m0

φ(z) =

ϕ(V −1
φ (z))JV −1

φ
(z) with Vφ(y) = µφ + Σ

−1/2
φ y. Other parameterization could be handled as well. With

two changes of variables, we can integrate w.r.t. ϕ, which implies that

Laux(φ) =
∑

a1∈{0,1}

∫
dydµU(u1)

[
αa1
u1

(
Vφ(y)

)
ϕ(y)h(u1) log

(
π̃
(
T a1
φ,u1

(
Vφ(y)

))
r
(
a1|T a1

φ,u1

(
Vφ(y)

)
, u1

)
q1
φ(T a1

φ,u1

(
Vφ(y)

)
, a1|u1)

)]
.

(8.12)
Justification and extension to the general case K ∈ N∗ is given in the supplementary paper, see
Section 8.8.1. From (8.12), using the general identity ∇α = α∇ log(α), the gradient of Laux is given by

∇Laux(φ) =
∑

a1∈{0,1}

∫
dydµU(u1)αa1

u1

(
Vφ(y)

)
ϕ(y)h(u1)

×
[
∇ log

(
π̃(T a1

φ,u1

(
Vφ(y)

)
r
(
a1|T a1

φ,u1

(
Vφ(y)

)
, u1

)
q1
φ(T a1

φ,u1

(
Vφ(y)

)
, a1|u1)

)
+∇ log

(
αa1
u1

(
Vφ(y)

))
× log

(
π̃(T a1

φ,u1

(
Vφ(y)

)
r
(
a1|T a1

φ,u1

(
Vφ(y)

)
, u1

)
q1
φ(T a1

φ,u1

(
Vφ(y)

)
, a1|u1)

)]
.

182 CHAPTER 8. METFLOW: MCMC & VI

Therefore, an unbiased estimator of ∇Laux(φ) can be obtained by sampling independently the proposal
innovation u1 ∼ h1 and the starting point y ∼ N (0, I), and then the acceptation a1 ∼ Ber

(
αa1
u1

(
Vφ(y)

))
.

A complete derivation for the case K ∈ N∗ is given in the supplementary paper, Section 8.8.2.

8.3 MetFlow: MCMC and Normalizing Flows

In this section, we extend the construction above to a new class of MCMC methods, for which the
proposal mappings are Normalizing Flows (NF). Our objective is to capitalize on the flexibility of NF
to represent distributions, while keeping the exactness of MCMC. This new class of MCMC are referred
to as MetFlow, standing for Metropolized Flows.

Consider a flow Tφ : RD × U → RD parametrized by φ ∈ Φ. It is assumed that for any u ∈ U,
Tφ,u : z 7→ Tφ(z, u) is a C1 diffeomorphism. Set V = {−1, 1}. For any u ∈ U, consider the involution
T̊φ,u on RD × V, i.e. T̊φ,u ◦ T̊φ,u = Id , defined for z ∈ RD, v ∈ {−1, 1} by

T̊φ,u(z, v) = (T vφ,u(z),−v) . (8.13)

The variable v is called the direction. If v = 1 (respectively v = −1), the “forward”(resp. “backward”)
flow Tφ,u (resp. T−1

φ,u) is used. For any z ∈ RD, v ∈ {−1, 1}, A ∈ B(RD), B ⊂ V, we define the kernel

Rφ,u
(
(z, v),A× B

)
= α̊φ,u(z, v)δT vφ,u(z)(A)⊗ δ−v(B) + {1− α̊φ,u(z, v)}δz(A)⊗ δv(B) , (8.14)

where α̊φ,u : RD × V→ [0, 1] is the acceptance function.

Proposition 66. Let ν be a distribution on V, and (u, φ) ∈ U×Φ. Assume that α̊φ,u : RD ×V→ [0, 1]
satisfies for any (z, v) ∈ RD × V,

α̊φ,u(z, v)π(z)ν(v) = α̊φ,u
(
T̊φ(z, v)

)
π
(
T vφ,u(z)

)
ν(−v)JT vφ,u(z) . (8.15)

Then for any (u, φ) ∈ U× Φ, Rφ,u defined by (8.14) is reversible with respect to π ⊗ ν. In particular, if
for any (z, v) ∈ RD × V,

α̊φ,u(z, v) = ϕ
(
π
(
T vφ,u(z)

)
ν(−v)JT vφ,u(z)/π(z)ν(v)

)
,

for ϕ : R+ → R+, then (8.15) is satisfied if ϕ(+∞) = 1 and for any t ∈ R+, tϕ(1/t) = ϕ(t).

Remark 67. The condition (8.15) on the acceptance ratio α̊φ,u has been reported in [Tie98], Section
2, (see also [AL19a], Proposition 3.5, for extensions to the non reversible case). Standard choices
for the acceptance function α̊φ,u are the Metropolis-Hastings and Barker ratios which correspond to
ϕ : t 7→ min(1, t) and t 7→ t/(1 + t) respectively.

If we define for u ∈ U, v ∈ V, z ∈ RD, A ∈ B(RD),

Qφ,(u,v)(z,A) = Rφ,u((z, v),A× V) = α̊φ,u(z, v)δT vφ,u(z)(A) + {1− α̊φ,u(z, v)}δz(A) , (8.16)

we retrieve the framework defined in Section 8.2. In turn, from a distribution ν for the direction, the
family {Qφ,(u,v) : (u, v) ∈ U× V} defines a MH kernel, given for u ∈ U, z ∈ RD, A ∈ B(RD) by

Mφ,u,ν(z,A)= ν(1)Qφ,(u,1)(z,A) + ν(−1)Qφ,(u,−1)(z,A) .

The key result of this section is

Corollary 68. For any u ∈ U and any distribution ν, the kernel Mφ,u,ν is reversible w.r.t. π.

8.3. METFLOW: MCMC AND NORMALIZING FLOWS 183

Consider for example the MALA proposal mapping TMALA
φ . If we set

α̊MALA
φ,u (z, v) = 1 ∧

{
π
(
T vφ,u(z)

)
ν(−v)JT vφ,u(z)/π(z)ν(v)

}
with Tφ ← TMALA

φ , then for any u ∈ RD and any distribution ν, MMALA
φ,u,ν is reversible w.r.t. π, which is

not the case for QMALA
φ,u defined in (8.3) with acceptance function αMALA

φ given by (8.5). Recall indeed
that the reversibility is only satisfied for the kernel

∫
QMALA
φ,u (z,A)ϕ(u)du.

As the reversibility is satisfied for any u1:K ∈ UK , we typically get rid of the integration w.r.t. the
innovation noise h1:K and rather consider a fixed sequence u1:K of proposal noise. For RWM or
MALA, this sequence could be a completely uniformly distributed sequence as in Quasi Monte Carlo
method for MCMC, see [SC18; CDO+11]. Using definition (8.16) and Proposition 65, we can write
the density qKφ,u1:K

(·|v1:K) of the distribution ξKφ,u1:K
(· | v1:K) = ξ0

φQφ,(u1,v1) · · ·Qφ,(uK ,vK). Setting
αφ,u,v(z) = α̊φ,u(z, v) as in the previous section, we can write, for any z ∈ RD, a1:K ∈ {0, 1}K ,
v1:K ∈ {−1, 1}K , u1:K ∈ UK

qKφ,u1:K
(z, a1:K |v1:K) = q0

φ

(
©K
j=1T

−vjaj
φ,uj

(z)
)
J
©K
j=1T

−vjaj
φ,uj

(z)
K∏
i=1

αaiui,vi
(
©K
j=iT

−vjaj
φ,uj

(z)
)
. (8.17)

Moreover, as reversibility is satisfied for any distribution ν, we could let it depend upon some parameters
also denoted φ and write νφ,1:K =

∏K
i=1 νφ,i. Defining an inference function ru1:K (a1:K |z, v1:K), we can

thus obtain the lower bound parametrized by the fixed sequence u1:K and φ:

Laux(φ;u1:K) =

∫∑
v1:K

∑
a1:K

qKφ,u1:K
(z, a1:K |v1:K)

× log

(
π̃(z)ru1:K (a1:K |z, v1:K)

qKφ,u1:K
(z, a1:K |v1:K)

)
νφ,1:K(v1:K)dz , (8.18)

for which stochastic optimization can be performed using the same reparametrization trick (8.12).
The choice of the transformation Tφ is really flexible. Let {Tφ,i}Ki=1 be a family of K diffeomorphisms

on RD. A flow model based on {Tφ,i}Ki=1 is defined as a composition Tφ,K ◦· · ·◦Tφ,1 that pushes an initial
distribution ξ0

φ with density m0
φ to a more complex target distribution ξKφ with density mK

φ , given for
any z ∈ RD by mK

φ (z) = m0
(
©K
i=1T−1

φ,i(z)
)
J©K

i=1T−1
φ,i

(z), see [TT13; RM15a; KPB19; Pap+19]. We now
proceed to the construction of MetFlow, based on the same deterministic sequence of diffeomorphisms.
A MetFlow model is obtained by applying successively the Markov kernels Mφ,1,ν , . . . ,Mφ,K,ν , written
as, for z ∈ RD, A ∈ B(RD), i ∈ {1, . . . ,K}:

Mφ,i,ν(z,A) =
∑
v∈V

ν(v)α̊φ,i(z, v)δTvφ,i(z)
(A) + (1−

∑
v∈V

ν(v)α̊φ,i(z, v))δz(A) .

Each of those is reversible w.r.t. the stationary distribution π and thus leaves π invariant. In such a case,
the resulting distribution ξKφ is a mixture of the pushforward of ξ0

φ by the flows {TvKaKφ,K ◦· · ·◦Tv1a1
φ,1 , v1:K ∈

VK , a1:K ∈ {0, 1}K}. The parameters φ of the flows {Tφ,i}Ki=1 are optimized by maximizing an ELBO
similar to (8.18) in which qKφ,u1:K

is substituted by qKφ,1:K with Tφ,ui ← Tφ,i. The kernel Mφ,i,ν shares
some similarity with Transformation-based MCMC (T-MCMC) introduced in [DB14]. However, the
transformations considered in [DB14] and later by [DB+16] are elementary additive or multiplicative
transforms acting coordinate-wise. In our contribution, we considered much more sophisticated
transformations, inspired by the recent advances on normalizing flows.

Among the different flow models which have been considered recently in the literature [Pap+19], we
chose Real-Valued Non-Volume Preserving (RNVP) flows [DSB16] because they are easy to compute
and invert. An extension of our work would be to consider other flows, such as Flow++ [Ho+19], which
can also be computed and inverted efficiently. We could also use autoregressive models, such as Inverse

184 CHAPTER 8. METFLOW: MCMC & VI

Autoregressive Flows [Kin+16b], which have a tractable - albeit non parallelizable - inverse. Even more
expressive flows like NAF [Hua+18a], BNAF [CTA19] or UMNN [WL19] could be experimented with.
Although they are not invertible analytically, this problem could be solved either by the Distribution
Distillation method [Oor+17], or simply by a classic root-finding algorithm: this is theoretically tractable
because of the monotonous nature of these flows, and empirically satisfactory [WL19].

8.4 Related Work

In this section, we compare our method with the state-of-the-art for combining MCMC and VI. The
first attempt to bridge the gap between MCMC and VI is due to [SKW15b]. The method proposed
in [SKW15b] uses a different ELBO, based on the joint distribution of the K steps of the Markov chain
z0:K = (z0, . . . , zK), whereas MetFlows are based on the marginal distribution of the K-th component.
[SKW15b] introduce an auxiliary inference function r and consider the ELBO:

∫
log

(
π̃(z)r(z0:K−1|zK)

qφ(z0:K)

)
qφ(z0:K)dz0:K = L(φ)−

∫
qKφ (zK)DKLqφ(· | zK)r(· | zK)dzK , (8.19)

where qφ(z0:K) is the joint distribution of the path z0:K w.r.t. the Lebesgue measure. An optimal choice of
the auxiliary inference distribution is r(z0:K−1 | zK) = qφ(z0:K−1|zK), the conditional distribution of the
Markov chain path z0:K−1 given its terminal value zK , but this distribution is in most cases intractable.
[SKW15b; WKS16] discuss several way to construct sensible approximations of qφ(z0:K−1 | zK) by
introducing learnable time inhomogeneous backward Markov kernels. This introduces additional
parameters to learn and degrees of freedom in the choice on the reverse kernels which are not easy to
handle. On the top of that, this increases significantly the computational budget.

[Hof17] also suggests to build a Markov Chain to enrich the approximation of π. More precisely,
[Hof17] optimizes the ELBO with respect to the initial distribution q0

φ, and only uses the MCMC steps
to produce “better” samples to the target distribution. However, there is no feedback from the resulting
marginal distribution there to optimize the parameters of the variational distribution φ. This method
does not thus directly and completely unifies VI and MCMC, even though it simplifies the process
by avoiding the use of the extended space and the reverse kernels. [RT19] refines [Hof17] by using a
contrastive divergence approach; compared to the methodology presented in this paper, [RT19] do not
capitalize on the expression of the marginal density.

Another solution to avoid reverse kernels is considered in [CDS18a] which amounts to remove
randomness from an Hamiltonian MC algorithm. However, by getting rid of the accept-reject step and
the resampling of the momenta in the HMC algorithm, this approach forgoes the guarantees that come
with exact MCMC algorithms.

8.5 Experiments

In this section, we illustrate our findings. We present examples of sampling from complex synthetic
distributions which are often used to benchmark generative models, such as a mixture of highly separated
Gaussians and other non-Gaussian 2D distributions. We also present posterior inference approximations
and inpainting experiments on MNIST dataset, in the setting outlined by [LHS17b]. Many more
examples are given in the supplementary paper.

We implement the MetFlow algorithm described in Section 8.3 to highlight the efficiency of our
method. For our learnable transitions Tφ, we use RNVP flows.

We consider two settings. In the deterministic setting, we use K different RNVP transforms
{Tφ,i}Ki=1, and the parameters for each individual transform Tφ,i are different. In the pseudo-randomized
setting, we define global transformation Tφ on RD × U and set Tφ,i = Tφ(·,ui), where u1:K are K
independent draws from a standard normal distribution. In such case, the parameters are the same for

8.5. EXPERIMENTS 185

the flows Tφ,i, only the innovation noise ui differs. Typically, RNVP are encoded by neural networks.
In the second setting, the network will thus take as input z and u stacked together.

In the second setting, once training has been completed and a fit φ̂ of the parameters has been
obtained, we can sample additional noise innovations u(K+1):mK . We then consider the distribution
given by ξmK

φ̂
= ξK

φ̂
Mφ̂,uK+1,ν

, . . . ,Mφ̂,umK ,ν
where ν is typically the uniform on {−1, 1}, as defined as

in Section 8.3. mK corresponds to the length of the final Markov chain we consider. In practice, we
have found that sampling additional noise innovations this way yields a more accurate approximation
of the target, thanks to the asymptotic guarantees of MCMC.

Barker ratios (see Remark 67) have the advantage of being differentiable everywhere. Metropolis-
Hastings (MH) ratios are known to more efficient than Barker ratios in the Peskun sense, see [Pes73].
Moreover, although they are not differentiable at every point z ∈ RD, differentiating MH ratios is no
harder than differentiating a ReLu function. We thus use MH ratios in the following.

All code is written with the Pytorch [Pas+17] and Pyro [Bin+18] libraries, and all our experiments
are run on a GeForce GTX 1080 Ti.

8.5.1 Synthetic data. Examples of sampling.

Mixture of Gaussians

The objective is to sample from a mixture of 8 Gaussians in dimension 2, starting from a standard
normal prior distribution q0, and compare MetFlow to RNVP. We are using an architecture of five
RNVP flows (K = 5), each of which is parametrized by two three-layer fully-connected neural networks
with LeakyRelu (0.01) activations. In this example, we consider the pseudo-randomized setting. The
results for MetFlow and for RNVPs alone are shown on Figure 8.1. First, we observe that while our
method successfully finds all modes of the target distribution, RNVP alone struggles to do the same.
Our method is therefore able to approximate multimodal distributions with well separated modes. Here,
the mixture structure of the distribution (with potentially 35 = 243 modes) produced by MetFlow
is very appropriate to such a problem. On the contrary, classical flows are unable to approximate
well separated modes starting from a simple unimodal prior, without much surprise. In particular,
mode dropping is a serious issue even in small dimension. Moreover, an other advantage of MetFlow
in the pseudo randomized setting is to be able to iterate the learnt kernels which still preserve the
target distribution. Iterating MetFlow kernels widens the gap between both approaches, significantly
improving the accuracy of our approximation.

Non-Gaussian 2D Distributions

In a second experiment, we sample the non-Gaussian 2D distributions proposed in [RM15a]. Figure 8.2
illustrates the performance of MetFlow compared to RNVP. We are again using 5 RNVPs (K = 5) with
the architecture described above, and use the pseudo-randomized setting for MetFlow. After only five
steps, MetFlow already finds the correct form of the target distribution, while the simple RNVP fails on
the more complex distributions. Moreover, iterating again MetFlow kernels allows us to approximate
the target distribution with striking precision, after only 50 MCMC steps.

8.5.2 Deep Generative Models

Deep Generative Models (DGM), such as Deep Latent Gaussian Models (see [KW13b; RMW14]) have
recently become very popular. The basic assumption in a DGM is that the observed data x is generated
by sampling a latent vector z which is used as the input of a deep neural network. This network then
outputs the parameters of a family of distributions (e.g., the canonical parameters of exponential family
like Bernoulli or Gaussian distributions) from which the data are sampled. Given data generated by a
DGM, a classical problem is to approach the conditional distribution p(z | x) of the latent variables z
given the observation x, using variational inference to construct an amortized approximation.

186 CHAPTER 8. METFLOW: MCMC & VI

Figure 8.1: Sampling a mixture of 8 Gaussian distributions. Top row from left to right: Target
distribution, MetFlow, MetFlow with 145 resampled innovation noise. Bottom row from left to right:
Prior distribution, First run of RNVP, Second run of RNVP. MetFlow finds all the modes and improves
with more iterations, while RNVP depend on a good initialization to find all the modes and fails to
separate them correctly.

We consider the binarized MNIST handwritten digit dataset. The generative model is as follows.
The latent variable z is a l = 64 dimensional standard normal Gaussian. The observation x = (xj)Dj=1

is a vector of D = 784 bits. The bits (xj)Dj=1 are, given the latent variable z, conditionally independent
Bernoulli distributed random variables with success probability pθ(z)j where (pjθ)

D
j=1 is the output of a

convolutional neural network. In this framework, pθ is called the decoder. In the following, we show that
our method provides a flexible and accurate variational approximation of the conditional distribution of
the latent variable given the observation pθ(z | x), outperforming mean-field and Normalizing Flows
based approaches.

As we are focusing in this paper on the comparison of VI methods to approximate complex
distributions and not on learning the Variational Auto Encoder itself, we have chosen to use a fixed
decoder for both Normalizing Flows (here, Neural Autoregessive Flows) and MetFlow (with RNVP
transforms). The decoder is obtained using state-of-the-art method described in the supplementary
paper. We can illustrate the expressivity of MetFlow in two different ways. We first fix L different
samples. In this example, we take L = 3 images representing the digit “3”. We are willing to approximate,
for a given decoder pθ, the posterior distribution pθ(z|(xi)Li=1). We show in Figure 8.3 the decoded
samples corresponding to the following variational approximations of pθ(·|(xi)Li=1): (i) a NAF trained
from the decoder to approximate pθ(·|(xi)Li=1) and (ii) MetFlow in the deterministic setting with K = 5
RNVP flows.

Figure 8.3 shows that the samples generated from (i) collapse essentially to one mode corresponding
to the first digit. On the contrary, MetFlow is able to capture the three different modes of the posterior
and generates much more variability in the decoded samples. The same phenomenon is observed in
different settings by varying L and the digits chosen, as illustrated in the supplementary paper.

8.5. EXPERIMENTS 187

Figure 8.2: Density matching example [RM15a] and comparison between RNVP and MetFlow.

Figure 8.3: Mixture of ’3’ digits. Top: Fixed digits, Middle: NAF samples, Bottom: MetFlow samples.
Compared to NAF, MetFlow is capable to mix better between these modes, while NAF seems to
collapse.

188 CHAPTER 8. METFLOW: MCMC & VI

Figure 8.4: Top line: Mean-Field approximation and MetFlow, Middle line: Mean-Field approximation,
Bottom line: Mean-Field Approximation and NAF. Orange samples on the left represent the initialization
image. We observe that MetFlow easily mixes between the modes while other methods are stuck in one
mode.

We now consider the in-painting set-up introduced in [LHS17b], Section 5.2.2. Formally, we in-paint
the top of an image using Block Gibbs sampling. Given an image x, we denote xt, xb the top and
the bottom half pixels. Starting from an image x0, we sample at each step zt ∼ pθ(z | xt) and then
x̃ ∼ pθ(x | zt). We then set xt+1 = (x̃t, xb0). We give the output of this process when sampling from the
mean-field approximation of the posterior only, the mean-field pushed by a NAF, or using our method.
The result for the experiment can be seen on Figure 8.4.

We can see that MetFlow mixes easily between different modes, and produces sharp images. We
recognize furthermore different digits (3,5,9). It is clear from the middle plot that the mean-field
approximation is not able to capture the complexity of the distribution pθ(z | x). Finally, the NAF
improves the quality of the samples but does not compare to MetFlow in terms of mixing.

8.6 Conclusions

In this paper, we propose a novel approach to combine MCMC and VI which alleviates the computational
bottleneck of previously reported methods. In addition, we design MetFlow, a particular class of
MH algorithms which fully takes advantage of our new methodology while capitalizing on the great
expressivity of NF. Finally, numerical experiments highlight the benefits of our method compared to
state-of-the-arts VI.

This work leads to several natural extensions. All NF applications can be adapted with MetFlow,
which can be seen as a natural extension of a NF framework. MetFlow are very appropriate for VAE
by amortizing. Due to lack of space, we did not present applications with Forward KL divergence.
The mixture structure of the distribution obtained by MetFlow suggests the Variational Expectation
Maximization (VEM) is a sensible strategy and in particular a chunky version of VEM in the case
where the number of steps K is large [VVN03].

8.7. PROOFS 189

Supplementary Material

8.7 Proofs

8.7.1 Proof of Proposition 65

The proof is by induction on K ∈ N∗. The base case K = 1 is given by Lemma 64. Assume now that
the statement holds for K−1 ∈ N∗. Then noticing that ξKφ (·|u1:K) = ξK−1

φ (·|u1:K−1)Qφ,uK , using again
Lemma 64 and the induction hypothesis, we get that ξKφ (·|u1:K) admits a density qKφ (·|u1:K) w.r.t. the
Lebesgue measure given for any z ∈ RD by

qKφ (z|u1:K) = αφ,uK (T−1
φ,uK

(z))qK−1
φ (T−1

φ,uK
(z)|u1:K−1)JT−1

φ,uK

(z) + {1− αφ,uK (z)}qK−1
φ (z|u1:K−1) ,

=
∑

aK∈{0,1}

αaKφ,uK (T−aKφ,uK
(z))J

T
−aK
φ,uK

(z)qK−1
φ (T−aKφ,uK

(z)|u1:K−1) .

Using the induction hypothesis, the density qK−1
φ (·|u1:K−1) w.r.t. the Lebesgue measure of ξK−1

φ (·|u1:K−1)
of the form (8.8). Therefore, we obtain that

qKφ (z|u1:K) =
∑

aK∈{0,1}

αaKφ,uK (T−aKφ,uK
(z))J

T
−aK
φ,uK

(z)

 ∑
a1:K−1∈{0,1}K−1

q0
φ(©K−1

j=1 T
−aj
φ,uj

(T−aKφ,uK
(z)))

× J
©K−1
j=1 T

−aj
φ,uj

(T−aKφ,uK
(z))

K−1∏
i=1

αaiφ,ui(©
K−1
j=i T

−aj
φ,uj

(T−aKφ,uK
(z)))

]

=
∑

a1:K∈{0,1}K
q0
φ(©K

j=1T
−aj
φ,uj

(z))J
T
−aK
φ,uK

(z)J
©K−1
j=1 T

−aj
φ,uj

(T−aKφ,uK
(z))αaKφ,uK (T−aKφ,uK

(z))
K−1∏
i=1

αaiφ,ui(©
K
j=iT

−aj
φ,uj

(z))

=
∑

a1:K∈{0,1}K
q0
φ(©K

j=1T
−aj
φ,uj

(z))J
©K
j=1T

−aj
φ,uj

(z)
K∏
i=1

αaiφ,ui(©
K
j=iT

−aj
φ,uj

(z)) ,

where in the last step, we have used that for any differentiable functions ψ1, ψ2 : RD → RD, Jψ1◦ψ2(z) =
Jψ1(ψ2(z))Jψ2(z) for any z ∈ RD.

8.7.2 Proof of Proposition 66

Let (u, φ) ∈ U×Φ. We want to find a condition such that the kernel Rφ,u defined by (8.14) is reversible
w.r.t. π ⊗ ν where ν is a distribution on V. This means that for any A1,A2 ∈ B(RD), B1,B2 ⊂ V,∫

A1×A2

∑
(v,v′)∈B1×B2

π(z)ν(v)Rφ,u((z, v), dz′×{v′})dz =

∫
A2×A1

∑
(v,v′)∈B2×B1

π(z)ν(v)Rφ,u((z, v), dz′×{v′})dz .

(8.20)
By definition of Rφ,u (8.14), the left-hand side simplifies to∫

A1×A2

∑
(v,v′)∈B1×B2

π(z)ν(v)Rφ,u((z, v),dz′ × {v′})dz =

∫
A1

∑
v∈B1

π(z)ν(v)Rφ,u((z, v),A2 × B2)dz

=

∫
A1

∑
v∈B1

π(z)ν(v)
{
α̊φ,u(z, v)δT̊φ,u(z,v)(A2 × B2) + {1− α̊φ,u(z, v)}δ(z,v)(A2 × B2)

}
dz

= I +

∫
RD

∑
v∈V

π(z)ν(v){1− α̊φ,u(z, v)}1A2×B2(z, v)1A1×B1(z, v)dz , (8.21)

190 CHAPTER 8. METFLOW: MCMC & VI

where using that T̊φ,u is an involution, and for v ∈ V, the change of variable z̃ = T−vφ,u(z),

I =

∫
RD

∑
v∈V

π(z)ν(v)α̊φ,u(z, v)1A2×B2(T̊φ,u(z, v))1A1×B1(z, v)dz

=

∫
RD

∑
v∈V

α̊φ,u(T vφ,u(z̃), v)JT−vφ,u
(z̃)π(T vφ,u(z̃))ν(v)1A2×B2(z̃,−v)1A1×B1(T vφ,u(z̃), v)dz̃

=

∫
RD

∑
ṽ∈V

α̊φ,u(T̊φ,u(z̃, ṽ))JT ṽφ,u
(z̃)π(T ṽφ,u(z̃))ν(−ṽ)1A2×B2(z̃, ṽ)1A1×B1(T̊φ,u(z̃, ṽ))dz̃ , (8.22)

where in the last step, we have the change of variable ṽ = −v. As for the right-hand side of (8.20), we
have by definition (8.14),∫

A2×A1

∑
(v,v′)∈B2×B1

π(z)ν(v)Rφ,u((z, v),dz′ × {v′})dz =

∫
A2

∑
v∈B2

π(z)ν(v)Rφ,u((z, v),A1 × B1)dz

=

∫
RD

∑
v∈V

π(z)ν(v)
{
α̊φ,u(z, v)1A1×B1(T̊φ,u(z, v)) + {1− α̊φ,u(z, v)}1A1×B1(z, v)

}
1A2×B2(z, v)dz .

Therefore combining this result with (8.21)-(8.22), we get that if (8.15) holds then Rφ,u is reversible
w.r.t. π ⊗ ν.

Moreover, let us suppose that ϕ : R+ → R+ is a function satisfying ϕ(+∞) = 1 and for any t ∈ R+,
tϕ(1/t) = ϕ(t). If for any z ∈ RD, u ∈ U, v ∈ V,

α̊φ,u(z, v) = ϕ

[
π(T vφ,u(z))ν(−v)JT vφ,u(z)

π(z)ν(v)

]
,

then

α̊φ,u(T̊φ(z, v))π(T vφ,u(z))ν(−v)JT vφ,u(z) = ϕ

[
π(z)ν(v)JT−vφ,u

(T vφ,u(z))

π(T vφ,u(z))ν(−v)

]
π(T vφ,u(z))ν(−v)JT vφ,u(z)

= ϕ

[
π(z)ν(v)

π(T vφ,u(z))ν(−v)JT vφ,u(z)

]
π(T vφ,u(z))ν(−v)JT vφ,u(z)

π(z)ν(v)
π(z)ν(v)

= ϕ

[
π(T vφ,u(z))ν(−v)JT vφ,u(z)

π(z)ν(v)

]
π(z)ν(v) = α̊φ,u(z, v)π(z)ν(v) ,

which concludes the proof for Proposition 66

8.7.3 Proof of Corollary 68

Let us suppose that for any u ∈ U, α̊φ,u are chosen such that Rφ,u defined by (8.14) is π ⊗ ν invariant,
where ν is any distribution on V. Then, by definition, for any A1,A2 ∈ B(RD), B1,B2 ⊂ V, we have:∫

A1×A2

∑
(v,v′)∈B1×B2

π(z)ν(v)Rφ,u((z, v), dz′ × {v′})dz =

∫
A2×A1

∑
(v,v′)∈B2×B1

π(z)ν(v)Rφ,u((z, v),dz′ × {v′})dz
∫

A1

∑
v∈B1

π(z)ν(v)Rφ,u((z, v),A2 × B2)dz =

∫
A2

∑
v∈B2

π(z)ν(v)Rφ,u((z, v),A1 × B1)dz .

This is true for any B1,B2 ⊂ V, hence in particular if B1 = B2 = V. Then∫
A1

∑
v∈V

π(z)ν(v)Rφ,u((z, v),A2 × V)dz =

∫
A2

∑
v∈V

π(z)ν(v)Rφ,u((z, v),A1 × V)dz∫
A1

π(z)
∑
v∈V

ν(v)Qφ,(u,v)(z,A2)dz =

∫
A2

π(z)
∑
v∈V

ν(v)Qφ,(u,v)(z,A1)dz.

8.8. REPARAMETERIZATION TRICK AND ESTIMATOR OF THE GRADIENT 191

By definition (8.16). In particular, we obtain exactly, for any u ∈ U,∫
A1

π(z)Mφ,u,ν(z,A2)dz =

∫
A2

π(z)Mφ,u,ν(z,A1)dz.

Thus concluding that Mφ,u,ν is reversible w.r.t. π, for any distribution ν and any u ∈ U.

8.7.4 Checking the Assumption of Lemma 64 for RWM and MALA algorithms

RWM: For any u ∈ RD and φ,
TRWM
φ,u (z) = z + Σ

1/2
φ u ,

which clearly is a C1(RD,RD) diffeomorphism with inverse

{TRWM
φ,u }−1(y) = y − Σ

1/2
φ u .

In the simple case where JTRWM
φ,u

(z) = 1, using Proposition 65, we get

qKφ (z, a1:K |u1:K) = q0
φ

z − k∑
j=1

ajuj

 K∏
i=1

αaiφ,ui

z − k∑
j=i

ajuj

 (8.23)

MALA: We prove here that under appropriate conditions, the transformations defined by the
Metropolis Adjusted Langevin Algorithm (MALA) are C1 diffeomorphisms. We consider only the case
where Σφ = γ Id. The general case can be easily deduced by a simple adaptation. Remember, for
MALA, T = {Tγ,u : z 7→ z+γ∇U(z)+

√
2γu : u ∈ RD, γ > 0}, where U is defined as U(z) = log(π̃(z)),

Proposition 69. Assume the potential U is gradient Lipschitz, that is there exists L in R+ such that
for any z1, z2 ∈ RD, ‖∇U(z1)−∇U(z2)‖ 6 L‖z1 − z2‖, and that γ 6 1/(2L). Then for any u in RD,
Tγ,u : z 7→ z + γ∇U(z) +

√
2γu is a C1 diffeomorphism.

Proof. Let γ 6 1/(2L) and u ∈ RD. First we show that Tγ,u is invertible. Consider, for each y in RD,
the mapping Hy,u(z) = y −√2γu− γ∇U(z). We have, for z1, z2 ∈ RD,

‖Hy,u(z1)−Hy,u(z2)‖ 6 γ‖∇U(z1)−∇U(z2)‖ 6 γL‖z1 − z2‖ (8.24)

and γL 6 1/2. Hence Hy,u is a contraction mapping and thus has a unique fixed point zy,u and we
have:

Hyu(zy,u) = zy,u ⇒ y = zy,u + γ∇U(zy,u) +
√

2γu (8.25)

and existence and uniqueness of the fixed point zy,u thus complete the proof for invertibility of Tγ,u.
The fact that the inverse of Tγ,u is C1 follows from a simple application of the local inverse function
theorem.

Therefore, Proposition 65 can be applied again. Although there is no explicit expression available
for qKγ because of the intractability of the inverse of Tγ,u, numerical approximations can be used.

8.8 Reparameterization trick and estimator of the gradient

8.8.1 Expression for the reparameterization trick

The goal of the reparameterization trick is to rewrite a distribution depending on some parameters as
a simple transformation of a fixed one. The implementation of this procedure is a bit more involved
in our case, as the integration is now done on a mixture of the components qKφ (z, a1:K |u1:K), for
a1:K ∈ {0, 1}K . To develop an understanding of the methodology we suggest, we consider first the

192 CHAPTER 8. METFLOW: MCMC & VI

case K = 1. Recall that ϕ stands for the density of the standard Gaussian distribution over RD,
and suppose here that there exists Vφ : RD → RD a C1 diffeomorphism such that for any z ∈ RD,
m0
φ(z) = ϕ(V −1

φ (z))JVφ(V −1
φ (z)) which is the basic assumption of the reparameterization trick. With

the two changes of variables, z̃ = T−a1
φ,u1

(z) and y = V −1
φ (z̃), we get

Laux(φ) =

∫
h1(u1)q1

φ(z, a1|u1) log

(
π̃(z)r(a1|z, u1)

q1
φ(z, a1|u1)

)
dzda1dµU(u1)

=
∑

a1∈{0,1}

∫
h1(u1)q0

φ(T−a1
φ,u1

(z))αa1
φ,u1

(T−a1
φ,u1

(z))J
T
−a1
φ,u1

(z) log

(
π̃(z)r(a1|z, u1)

q1
φ(z, a1|u1)

)
dzdµU(u1)

=
∑

a1∈{0,1}

∫
h1(u1)q0

φ(z̃)αa1
φ,u1

(z̃) log

(
π̃(T a1

φ,u1
(z̃))r(a1|T a1

u1,φ
(z̃), u1)

q1
φ(T a1

φ,u1
(z̃), a1|u1)

)
dz̃dµU(u1) (8.26)

=
∑

a1∈{0,1}

∫
h1(u1)ϕ(y)αa1

φ,u1
(Vφ(y)) log

(
π̃(T a1

φ,u1
(Vφ(y))r(a1|T a1

φ,u1
(Vφ(y)), u1)

q1
φ(T a1

φ,u1
(Vφ(y)), a1|u1)

)
dydµU(u1) .

This result implies that we can integrate out everything with respect to ϕ.

The intuition is the same after K steps, and we can write:

Laux(φ) =

∫
h1:K(u1:K)

∑
a1:K∈{0,1}K

qKφ (z, a1:K |u1:K) log

(
π̃(z)r(a1:K |z, u1:K)

qKφ (z, a1:K |u1:K)

)
dzdµ⊗KU (u1:K)

=
∑

a1:K∈{0,1}K

∫
h1:K(u1:K)q0

φ(©K
j=1T

−aj
φ,uj

(z))J
©K
j=1T

−aj
φ,uj

(z)

×
K∏
i=1

αaiφ,ui(©
K
j=iT

−aj
φ,uj

(z)) log

(
π̃(z)r(a1:K |z, u1:K)

qKφ (z, a1:K |u1:K)

)
dzdµ⊗KU (u1:K)

=
∑

a1:K∈{0,1}K

∫
h1:K(u1:K)q0

φ(z̃)
K∏
i=1

αaiφ,ui(©
1
j=i−1T

aj
φ,uj

(z̃))

× log

(
π̃(©1

j=KT
aj
φ,uj

(z̃))r(a1:K | ©1
j=K T

aj
φ,uj

(z̃), u1:K)

qKφ (©1
j=KT

aj
φ,uj

(z̃), a1:K |u1:K)

)
dz̃dµ⊗KU (u1:K)

=
∑

a1:K∈{0,1}K

∫
h1:K(u1:K)ϕ(y)

K∏
i=1

αaiφ,ui(©
1
j=i−1T

aj
φ,uj

(Vφ(y)))

× log

(
π̃(©1

j=KT
aj
φ,uj

(Vφ(y)))r(a1:K | ©1
j=K T

aj
φ,uj

(Vφ(y)), u1:K)

qKφ (©1
j=KT

aj
φ,uj

(Vφ(y)), a1:K |u1:K)

)
dydµ⊗KU (u1:K) . (8.27)

8.8.2 Unbiased estimator for the gradient of the objective

We now show in the following that we can also estimate without bias the gradient of the objective starting
from the expression (8.27) of the ELBO assuming that we can perform the associated reparameterization
trick.

Again, we start by the simple case K = 1 to give the reader the main idea of the proof. Using for

8.8. REPARAMETERIZATION TRICK AND ESTIMATOR OF THE GRADIENT 193

any function f : RD → R∗+, ∇f = f∇ log(f), the gradient of our ELBO is given for any φ ∈ Φ by

∇Laux(φ) =
∑

a1∈{0,1}

∫
h1(u1)ϕ(y)αa1

φ,u1
(Vφ(y))

[
∇ log

(
π̃(T a1

φ,u1
(Vφ(y))r(a1|T a1

φ,u1
(Vφ(y)), u1)

q1
φ(T a1

φ,u1
(Vφ(y)), a1|u1)

)

+∇ log[αa1
φ,u1

(Vφ(y))] log

(
π̃(T a1

φ,u1
(Vφ(y))r(a1|T a1

φ,u1
(Vφ(y)), u1)

q1
φ(T a1

φ,u1
(Vφ(y)), a1|u1)

)]
dydµU(u1) .

Now, this form is particularly interesting, because we can access an unbiased estimator of this sum
by sampling u1 ∼ h1 and y ∼ ϕ, then a1 ∼ Ber{α1

φ,u1
(Vφ(y))} and computing the expression between

brackets.
The method goes the same way for the K-th step. Indeed for any φ ∈ Φ, we have using for any

function f : RD → R∗+, ∇f = f∇ log(f),

∇Laux(φ) =
∑

a1:K∈{0,1}K

∫
h1:K(u1:K)ϕ(y)

K∏
i=1

αaiφ,ui

(
©1
j=i−1T

aj
φ,uj

(Vφ(y))
)

×
[
∇ log

(
π̃(©1

j=KT
aj
φ,uj

(Vφ(y)))r(a1:K | ©1
j=K T

aj
φ,uj

(Vφ(y)), u1:K)

qKφ (©1
j=KT

aj
φ,uj

(Vφ(y)), a1:K |u1:K)

)

+ log

(
π̃(©1

j=KT
aj
φ,uj

(Vφ(y)))r(a1:K | ©1
j=K T

aj
φ,uj

(Vφ(y)), u1:K)

qKφ (©1
j=KT

aj
φ,uj

(Vφ(y)), a1:K |u1:K)

)

×
K∑
i=1

∇ log[αaiφ,ui

(
©1
j=i−1T

aj
φ,uj

(Vφ(y))
)

]

]
dzdµ⊗KU (u1:K) . (8.28)

And again, this sum can be estimated by sampling u1:K ∼ h1:K , y ∼ ϕ, then recursively a1 ∼
Ber(α1

φ,u1
(Vφ(y)) and for i > 1,

ai ∼ Ber
(
αaiφ,ui

(
©1
j=i−1T

aj
φ,uj

(Vφ(y))
))

.

Those variables sampled, the expression between brackets provides an unbiased estimator of the gradient
of our objective.

8.8.3 Extension to Hamiltonian Monte-Carlo

Inversibility of kernel (8.3) when the transformations are involutions

The following proposition show a key result for applicability of HMC to our method.

Proposition 70. Assume that for any (u, φ) ∈ U× Φ, Tφ,u defines an involution, i.e. Tφ,u ◦ Tφ,u = Id.
If for any z ∈ RD,

αφ,u(z)π(z) = αφ,u(Tφ,u(z))π(Tφ,u(z))JTφ,u(z) ,

then the kernel defined by (8.3) and acceptance functions α and transformation Tφ is reversible w.r.t. π.

This result is direct consequence of Proposition 66. In particular, the functions ϕ identified in
Proposition 66 are still applicable here.

Application to HMC

An important special example which falls into the setting of Proposition 70 is the Hamiltonian Monte-
Carlo algorithm (HMC) [Dua+87; Nea11]. In such a case, the state variable is z = (q, p) ∈ R2D, where
q stands for the position and p the momentum. The unnormalized target distribution is defined as
π̃(q, p) = π̃(q)ϕ(p) where ϕ is the density of the D-dimensional standard Gaussian distribution. Define

194 CHAPTER 8. METFLOW: MCMC & VI

the potential U(q) = − log(π̃(q)). Hamiltonian dynamics propagates a particle in this extended space
according to Hamilton’s equation, for any t > 0,

d

dt

[
q(t)
p(t)

]
=

[
p(t)
−∇U(t)

]
.

This dynamics preserves the extended target distribution as the flow described above is reversible,
symplectic and preserves the Hamiltonian H(q, p), defined as the sum of the potential energy U(q) =
− log(π̃(q)) and the kinetic energy (1/2)pT p (note that we can write π̃(q, p) ∝ exp(−H(q, p))), see [BJ18].
It is not however usually possible to compute exactly the solutions of the continuous dynamics described
above. However, reversibility and symplectiness can be preserved exactly by discretization using a
particular scheme called the leap-frog integrator. Given a stepsize η, the elementary leap-frog Fη(q0, p0)
for any (q0, p0) ∈ R2D is given by Fη(q0, p0) = (q1, p1) where

p1/2 = p0 − η/2∇U(q0)

q1 = q0 + ηp1/2

p1 = p1/2 − η/2∇U(q1) .

The N -steps leap-frog integrator with stepsize η > 0 is defined by Fη,N = ©N
i=1 Fη is the N -times

composition of Fη. For some parameters a ∈ (0, 1) and η > 0, consider now the two following
transformations:

T ref
φ,u(q, p) = (q, ap+

√
1− a2u) , u ∈ U = RD ,

TF
φ (q, p) = Fη,N (q,−p) .

Here, the parameter φ stands for the stepsize η and the auto-regressive coefficient a in the momentum
refreshment transform. Other parameters could be included as well; see for example [LHS17b]. For
any a ∈ (0, 1), T ref

φ,u is a continuously differentiable diffeomorphism. Then, taking h = ϕ and setting
the acceptance ratios to αref

φ,u ≡ 1, it is easily showed that M ref
φ,h defined by (8.2) – with Tφ,u ← T ref

φ,u

– is reversible w.r.t. π̃. On the other hand, by composition and a straightforward induction, for any
φ ∈ Φ, TF

φ is continuously differentiable if log(π) is twice continuously differentiable on RD and the
determinant of its Jacobian is equal to 1 on RD. In addition, TF

φ is an involution by reversibility to the
momentum flip operator of the Hamiltonian dynamics [BJ18], Section 6. Indeed, TF

φ is here written
as the composition of Fη,N and the momentum flip operator S(q, p) = (q,−p), TF

φ = Fη,N ◦S. [BJ18]
show indeed that Fη,N satisfies the following property Fη,N ◦S = S ◦ F−1

η,N . As S is also an involution,
we can write S ◦ Fη,N ◦S = F−1

η,N and thus Fη,N ◦S ◦ Fη,N ◦S = Id, hence TF
φ is an involution. Thus,

Proposition 70 applies and the expression given for αφ,u is the classical acceptance ratio for HMC when
ϕ(t) = min(1, t). HMC algorithm is obtained by alternating repeatedly these two kernels M ref

φ,h and
MF
φ . To fall exactly into the framework outlined above, one might consider the extension U× {0, 1},

for (q, p) ∈ (RD)2, (u, v) ∈ U× {0, 1}, the transformation

Tφ
(
(p, q), (u, v)

)
=

{
T ref
φ,u(q, p) if v = 1,

TF
φ (q, p) if v = 0,

(8.29)

and the two densities href(u, v) = h(u)1{1}(v), hF(u, v) = f(u)1{0}(v) where f is an arbitrary density
since TF

φ does not depend on u. The kernel defined by (8.2) associated with this transformation and
density href is Mφ,href

= M ref
φ,h, and similarly Mφ,hF

= MF
φ,g. Then, the density after K HMC steps with

parameters φ can be written as ξKφ = ξ0
φ(Mφ,hF

Mφ,href
)K .

8.9. OPTIMIZATION PROCEDURE 195

8.9 Optimization Procedure

8.9.1 Optimization in the general case

We saw in the previous section a way to compute an unbiased estimator of our objective. We will
perform gradient ascent in the following, using the estimator provided before.

At each step of optimization, we will sample u1:K ∼ h1:K , y ∼ ϕ and then sequentially a1 ∼
Ber(α1

φ,u1
(Vφ(y)) and for i > 1, ai ∼ Ber(αaiφ,ui(©

1
j=i−1T

aj
φ,uj

(Vφ(y))). With those variables, we can
compute the expression between brackets in the formula above (8.28). We then perform a stochastic
gradient scheme, repeating the process until convergence of our parameters. A detailed algorithm
highlighting the simplicity of our method is presented in 8.9.1. Note that our method “follows” a
trajectory, conditioned on noise u1:K and accept/reject Booleans a1:K , which is conceptually equivalent
to a flow pushforward.

Algorithm 11 Optimization procedure
Input: Transformation Tφ, Acceptance function αφ,u, Unnormalized target π̃(.), Variational prior
m0
φ(.) and reparameterization trick Vφ, densities on U {hi, i ∈ {1, . . . ,K}} w.r.t. µU

Input: T optimization steps, schedule γ(t)
Initialize parameters φ;
for t = 1 to T do

Sample u1, . . . , uK from h1, . . . , hK innovation noise;
Sample y ∼ N (0, I) starting point;
Define current point zaux ← Vφ(y);
a← 1, Sa ← 0 product of the α and sum of the log gradients respectively;
for k = 1 to K do

Sample ak from Ber(α1
φ,uk

(zaux));
αaux = αakφ,uk(zaux);
Compute dak = ∇φαaux;
Update auxiliary variables:
a← a× αaux , Sa ←, Sa + dak/αaux;
zaux ← T akφ,uk(zaux);

end for
Compute dp = ∇φ(log(π̃(zaux));
Compute dr = ∇φ(log(r(a1:K | zaux, u1:K));
Compute dm = ∇φ(|Vφ|)/|Vφ|+∇φ log(J

©K
j=1T

−aj
φ,uj

(zaux)) + Sa;

Compute p = log(π̃(zaux));

Compute m = log

(
γ(y)|Vφ|J©K

j=1T
−aj
φ,uj

(zaux)a

)
;

Compute r = log(r(a1:K | zaux, u1:K))
Apply gradient update with Γφ = dp+ dr − dq + (p+ r − q)× Sa, schedule γ(t);

end for

8.9.2 Optimization for MetFlow

We give in the following a detailed algorithm for the optimization procedure for MetFlow, highlighting
the low computational complexity of our method compared to the previous attempts. Note that the
increased complexity is only linear inK the number of steps in our Markov Chain. The functions denoted
as acceptance function are for u ∈ U, v ∈ {−1, 1}: α1

u,v(z) = α̊φ,u(z, v) and α0
u,v(z) = 1− α̊φ,u(z, v).

Define the Rademacher distribution Rad(p) on {−1, 1} with parameter p ∈ [−1, 1] by Rad(p) =
pδ1 + (1− p)δ−1. The noise v for MetFlow will be sampled using a Rademacher distribution, whose
parameter p is let to depend on some parameters φ which will be optimized.

196 CHAPTER 8. METFLOW: MCMC & VI

Algorithm 12 Optimization procedure for MetFlow
Input: T optimization steps, schedule γ(t)
Input: Transformation Tφ, Acceptance function αau,v, Unnormalized target π̃(.), Variational prior
m0
φ(.) and reparameterization trick Vφ, densities on U {hi, i ∈ {1, . . . ,K}} w.r.t. µU, probabilities
{pφ,i, i ∈ {1, . . . ,K}} for Rademacher distributions
Initialize parameters φ;
for t = 1 to T do

Sample u1, . . . , uK from h1, . . . , hK ;
Sample v1, . . . , vK from Rad(pφ,1), . . . ,Rad(pφ,K);
Sample y ∼ N (0, I);
Sa, Sp ← 0;
a← 1;
zaux ← Vφ(y);
for k = 1 to K do

Sample ak ∼ Ber(α1
uk,vk

(zaux));
αaux = αakuk,vk (zaux);
Compute dak = ∇φαaux;
Sa ← Sa + dak/αaux;
Sp ← Sp + 2−1(1 + vk)∇φpφ,k/pφ,k − 2−1(1− vk)∇φpφ,k/(1− pφ,k);
a← a× αaux
zaux ← T vkakφ,uk

(zaux);
end for
Compute dp = ∇φ(log(π̃(zaux));
Compute dm = ∇φ(|Vφ|)/|Vφ|+∇φ log(J

©K
j=1T

−vjaj
φ,uj

(zaux)) + Sa;

Compute dr = ∇φ log(r(a1:K |zaux, u1:K , v1:K))
Compute p = log(π̃(zaux));

Compute m = log

(
γ(y)|Vφ|J©K

j=1T
−vjaj
φ,uj

(zaux)a

)
;

Compute r = log(r(a1:K |zaux, u1:K , v1:K));
Apply gradient update using Γφ = dp+ dr − dq + (p+ r − q)× (Sa + Sp), schedule γ(t);

end for

8.10 Experiments

In all the sampling experiments presented in the main paper (mixture of Gaussians, [RM15a] distribu-
tions) as well as for the additional experiments presented here (Neal’s funnel distribution, mixture of
Gaussians in higher dimensions), the flows used are real non volume preserving (R-NVP) [DSB16] flows.
For φ ∈ Φ, one R-NVP transform fφ on RD is defined as follows, for any z ∈ RD, z̃ = fφ(z), with
z̃I = zI and z̃Ic = zIc � exp(sφ(zI)) + tφ(zI), where � is the element-wise product, I ⊂ {1, . . . , D} with
cardinal |I|, called an auto regressive mask, and Ic = {1, . . . , D} \ I, sφ, tφ : R|I| → RD−|I|. Typically, the
two functions sφ, tφ are parametrized by a neural network and that case φ represents the corresponding
weights. The use of this kind of functions is justified by the fact that inverses for these flows can be easily
computed and have a tractable Jacobian. Indeed, a straightforward calculation leads to for any z ∈ RD,
z̃ = f−1

φ (z) with z̃I = zI and z̃Ic = (zIc − tφ(zI))� exp(−sφ(zI)) and Jfφ(z) = exp {∑D−|I|
j=1 (sφ(zI))j}.

In our experiments, we consider a generalization of this setting which we refer to as latent noisy NVP
(LN-NVP) flows defined for (φ, u) ∈ Φ× U, fφ,u : RD → RD, of the form for any z ∈ RD, z̃ = fφ,u(z)
with z̃I = zI, z̃Ic = zIc�exp(sφ(zI, u))+tφ(zI, u), where I is an auto-regressive mask and sφ, tφ : R|I|×U→
RD−|I|. All the results on R-NVP apply to our LN-NVP, in particular for any z ∈ RD, z̃ = f−1

φ,u(z) with

z̃I = zI and z̃Ic = (zIc − tφ(zI, u))� exp(−sφ(zI, u)) and Jfφ,u(z) = exp {∑D−|I|
j=1 (sφ(zI, u))j}.

8.10. EXPERIMENTS 197

Figure 8.5: Consecutive outputs of each MetFlow kernel. Left: prior normal distribution, then successive
effect of the 5 trained MetFlow kernels.

Figure 8.6: Consecutive outputs of each block of R-NVP. Left: prior normal distribution, then successive
effect of the 5 trained R-NVP blocks - 6 transforms each.

8.10.1 Mixture of Gaussians: Additional Results

We use MetFlow with the pseudo random setting. Recall that by this, we mean that we define a
unique function (z, u) → Tφ(z, u) and before training, we sample innovation noise u1, . . . , uK that
will be “fixed” during all the training process. We then perform optimization on the “fixed” flows
Tφ,i ← Tφ(·, ui) , i ∈ {1, . . . ,K}. The specific setting we consider first is as follows. We compare
the sampling based on variational inference with R-NVP Flow and our methodology MetFlow with
LN-NVP. In both case, each elementary transformation we consider is the composition of 6 NVP
transforms. Here U = RD with D = 2 and the target distribution is the one described in Section 8.5.1.
Each function t and s in the NVP flows is a neural network with one fully connected hidden layers
of size 4 for R-NVP and LN-NVP, and LeakyRelu (0.01) activation functions, and final layers with
activation functions tanh for s and identity for t. Each method is trained for 25000 iterations, with
ADAM [KB14], with learning rate of 10−3 and betas = (0.9, 0.999), and an early stopping criterion of
250 iterations (If within 250 iterations, the objective did not improve, we stop training). The prior
distribution is a standard normal Gaussian. Figure 8.5 and Figure 8.6 show the results and the effect of
each trained flow. The first pictures are gradient-coloured along the x-axis, with the colour of each
point corresponding to its position in the previous image. This helps us to understand how well the
processes mixes and transforms an original distribution. It is interesting to note that our method
produces flows that are all relevant and all help the distribution to improve at each step. On the
contrary, classical R-NVP and flows in general only take interest in what happens at the very last
(K-th) step: the pushforward distribution can take any form in between. However, this representation
is only interesting when each of the transformations have different sets of parameters, increasing a
lot the total numbers of parameters to tune. The evolution of our method can be interpreted as well
with the presence of acceptance ratios, that at each step “filter” or “tutor” the distribution, helping
it not to get too far from the target. This allows us as well to introduce the setting where we can
iterate our flows to refine more and more the approximation we produce in the end. We also show that
our method is robust to a change in the prior (even a violent one). In the following figure, we change
the standard normal prior to a mixture of two well-separated Gaussian distributions, with a standard
deviation of 1 and means (−50, 0) and (50, 0). Figure 8.7 shows that MetFlow still remains efficient
after iterating only a few times the learnt kernel, without retraining it at any point. It obviously does
not work for R-NVP. Recall that by "iterating a kernel", we mean (as is explained in the main paper)
that additional noise {ui}i>K+1 is sampled to define other transformations Tφ,i ← Tφ(·, ui) and thus
additional MetFlow kernels. This particular property could find applications with time-changing data

198 CHAPTER 8. METFLOW: MCMC & VI

domains. Indeed, it does not require retraining existing models, while remaining an efficient way to
sample from a given distribution at low computational cost.

Figure 8.7: Changing the prior to a mixture of two separated Gaussians, having trained the method
on a standard normal prior. Top row, from left to right: Subsituted prior, 5 trained MetFlow kernels,
re-iteration of 100 MetFlow kernels, 200 MetFlow kernels. Bottom row: Substituted prior, R-NVP flow.

Mode retrieval Challenge

Variational Inference, and especially VAEs, suffer from a known issue: Variational pruning. This
happens in particular because the exclusive KL used in VI (DKLqπ =

∫
q log(qπ) does not penalize

variational distribution when it does not put mass on areas where π is important. This tends to
concentrate the variational approximation on a mode of the target and "forget", or "prune", the others.
To benchmark our method built to use the exactness of MCMC to tackle this issue, we consider a
mixture of Gaussian distributions as our target, in several dimensions. More precisely, in dimension
d, our target is a mixture of 8 Gaussians with variance 1, located at the corners of the d-dimensional
hypercube. We show in Figure 8.8 the number of modes retrieved by a large variety of state-of-the-art
methods, both from a pure VI framework or a pure MCMC framework, as well as performance of our
hybrid method. Our methods here are deterministic MetFlow with 7 R-NVP blocks and MetFlow in
fully random setting, which will be defined below. Constituents of two t and s being as previously two
one-layer fully connected neural networks, input dimension of the dimension considered d (again, we
take U = Rd) and hidden dimension of 2d. The activation functions stay the same, LeakyRelu (0.01)
for all layers except final layer, and final layers with activation functions tanh for s and identity for
t. We present as well another setting, referred to as “fully random”, which will be further studied in
Section 8.10.4. In this setting, we use LN-NVP blocks for which the innovation noise u is resampled
at each epoch. Note that if the R-NVP blocks are all parameterized independently, LN-NVP blocks
are jointly parameterized by the same functions t, s, reducing drastically the number of parameters.
This introduces additional randomness into our algorithm, which counterfacts the decrease in the
number of parameters compared to the deterministic setting on the overall computational complexity.
t and s are similar to R-NVP described previously, except that their input layer is now 2d twice
the dimension, as we consider here noise innovation u ∈ Rd. We compare our method with MCMC
methods, NUTS in this case, with different initializations and number of chains. First, we considered 8
chains of NUTS, ran to match training time of MetFlow. We initialized it either with a wide Gaussian,
covering all the modes of the target distribution, or with a Gaussian trained before using Hoffman’s VI
procedure [Hof17] (consider mean-field approximation by minimizing KL-divergence between initial
distribution and target). Note, that both these priors simplifies sampling drastically, since they transfer
an information about target to prior. We also present a result obtained using 8-time longer NUTS
chain, with wider prior initialization. Finally, we present results obtained using NAF, a state-of-the-art

8.10. EXPERIMENTS 199

Figure 8.8: Number of modes retrieved by different methods. The target distribution is a mixture of 8
isotropic Gaussian distributions of variance 1 located at the corners of a d-dimensional hypercube. The
methods were trained in a way to use the same computational budget, and mode retrieval is computed
by counting the number of samples in a ball of radius 2

√
d around the center of a mode. Error bars

represent the standard deviation of the mean number of modes retrieved for different runs of the method
(different initialization and random seed).

Normalizing Flow.
We can see, that the best result displayed on the plot is 8 chains of NUTS algorithm, initialized from

wide prior, which captures all these modes. We stress, that this result is expected, because randomly
initialized chains from that prior have more chances to find different modes. While usage of NUTS
with target-aware prior leads to spectacular results, our method shows that even without this cheating
knowledge we can obtain decent results We emphasize the fact that the time complexity shown here
is training time for MetFlow or NAF, as sampling time is negligible once training is complete, while
it is really sampling time for MCMC techniques as NUTS. In particular, this explains why MCMC
techniques are not used per say in VI and VAEs, or just as some short-run MCMC starting from an
informative initial distribution [Hof17]. We show in particular in the following figure that we combine
more effectively the exactness of MCMC in a VI setting, for a similar computational cost.

The results show competitiveness of MetFlow method compared to state-of-the-art VI and the
hybrid MCMC/VI method described in [Hof17]. The complexity of the distribution obtained after using
MetFlow is indeed higher than either NAF or NUTS run after Hoffman initialization, even with a very
long chain. Note here that if 8 chains of NUTS run after a wide initial distribution effectively retrieve
more modes, in practical applications, such as the VAE, this would be impossible. VAEs would require
for each example of the dataset to run a long NUTS chain starting from a wide prior to get relevant
samples, which is not realistic in practice (hence the suggestion from [Hof17] to start a short-run MCMC
from a “good” initial distribution). Our method thus produces a better approximation of a complex

200 CHAPTER 8. METFLOW: MCMC & VI

Figure 8.9: The figure demonstrates, that all these methods used approximately the same computational
budget.

8.10. EXPERIMENTS 201

Figure 8.10: Density matching for funnel. Top row: Target distribution, MetFlow with 5 trained kernels,
MetFlow with 5 trained kernel iterated 100 times. Bottom row: Prior distribution, First run of 5
R-NVP, second run of 5 R-NVP

multimodal distribution.

8.10.2 Funnel distribution

We now test our approach on an other hard target distribution for MCMC proposed in [Nea03]. The
target distribution has density Lebesgue density w.r.t. the Lebesgue measure given for any z ∈ R2 by

π(z) ∝ exp(z2
1/2) exp(z2ez1/2) . (8.30)

We are using exactly the same setting for MetFlow with LN-NVP and R-NVP as for the mixture of
Gaussian. We train the flows with the same optimizer, for 25000 iterations again. Figure 8.10 show the
results of MetFlow and R-NVP flows. Again, as we are in the pseudo random setting, we sample 95
additional innovation noise (ui)i∈{6,...,100} and show the distribution produced by 100 MetFlow kernels,
having only trained the first five transformations {Tφ,i , i ∈ {1, . . . , 5}}, as described in Section 9.4 of
the main document. We can observe that after only five steps, the distribution has been pushed toward
the end of the funnel. However, the amplitude is not recovered fully. It can be interpreted in light of the
“tutoring” analogy we used previously. As the Accept/Reject control at each step the evolution of the
points, if the number of steps is too small, the proposals do not got to the far end of the distribution.
However, the plots show that the proposal given by MetFlow are still learnt relevantly, as Figure 8.10
illustrates that iterating only a few more MetFlow kernels matches the target distribution in all its
amplitude.

202 CHAPTER 8. METFLOW: MCMC & VI

8.10.3 Real-world inference - MNIST

In the experiments ran on MNIST described in the main paper, we fix a decoder pθ. To obtain our model,
we use the method described in [Kin+16b]. The mean-field approximation output by the encoder is here
pushforward by a flow. In [Kin+16b], the flows used were Inverse Autoregressive Flows, introduced in
the same work. We choose here to use a more flexible class of flows neural auto-regressive flows (NAF),
introduced in [Hua+18a], which show better results in terms of log-likelihood. In practice, we use
convolutional networks for our encoder and decoder, matching the architecture described in [SKW15b].
The inference network (encoder) consists of three convolutional layers, each with filters of size 5× 5
and a stride of 2, and output 16, 32, and 32 feature maps, respectively. The output of the third
layer feeds a fully connected layer with hidden dimension 450, which then is fully connected to the
outputs, means and standard deviations, of the size of our latent dimension, here 64. Softplus activation
functions are used everywhere except before outputting the means. For the decoder, a similar but
reversed architecture is used, using upsampling instead of stride, again as described in [SKW15b]. The
Neural Autoregressive Flows are given by pyro library. NAF have a hidden layer of 64 units, with an
AutoRegressiveNN which is a deep sigmoidal flow [Hua+18a], with input dimension 64 and hidden
dimension 128. Our data is the classical stochastic binarization of MNIST [SM08a]. We train our
model using Adam optimizer for 2000 epoches, using early stopping if there is no improvement after
100 epoches. The learning rate used is 10−3, and betas (0.9, 0.999). This produces a complex and
expressive model for both our decoder and variational approximation.

We show first using mixture experiments that MetFlow can overcome state-of-the-art sampling
methods. The mixture experiment described in the main paper goes as follows. We fix L different
samples, and wish to approximate the complex posterior pθ(·|(xi)Li=1)) ∝ p(z)∏L

i=1 pθ(xi|z). We give
two approximations of this distribution, given by a state-of-the-art method, and MetFlow. The state-
of-the-art method is a NAF a hidden layer of 16 units, with an AutoRegressiveNN which is a deep
sigmoidal flow [Hua+18a], with input dimension 64 and hidden dimension 128. MetFlow is trained
here in the deterministic setting, with 5 blocks of 2 R-NVPs, where again each function t and s is a
neural network with one fully connected hidden layers of size 128 and LeakyRelu (0.01) activation
functions, and final layers with activation functions tanh for s and identity for t. MetFlow and NAF
are optimized using 10000 batches of size 250 and early stopping tolerance of 250, with ADAM, with
learning rate of 10−3 and betas = (0.9, 0.999). We use Barker ratios as well here. The prior in both
cases is a standard 64-dimensional Gaussian.

Figure 8.11: Fixed digits for mixture experiment.

We see on Figure 8.13 that if NAF “collapses” to one fixed digit (thus one specific mode of the
posterior), MetFlow Figure 8.12 is able to find diversity and multimodality in the posterior, leading
even to “wrong” digits sometimes, showing that it truly explores the complicated latent space.

Moreover, we can compare the variational approximations computed for our VAE (encoder - mean
field approximation - and encoder and NAF) to MetFlow approximation. MetFlow used here are the
composition of 5 blocks of 2 R-NVPs (deterministic setting), where each function t and s is a neural
network with one fully connected hidden layers of size 128 and LeakyRelu (0.01) activation functions,
and final layers with activation functions tanh for s and identity for t. MetFlow is optimized using 150
epoches of 192 batches of size 250 over the dataset MNIST, with ADAM, with learning rate of 10−4

and betas = (0.9, 0.999) and early stopping with tolerance of 25 (if within 25 epoches the objective
did not improve, we stop training). The optimization goes as follows. We fix encoder (mean-field
approximation) and decoder (target distribution). For each sample x in a minibatch of the dataset,

8.10. EXPERIMENTS 203

Figure 8.12: Mixture of 3, MetFlow approxi-
mation.

Figure 8.13: Mixture of 3, NAF approximation.

Initial sample MetFlow

Initial sample Encoder

Initial sample Encoder and NAF

Figure 8.14: Gibbs inpainting experiments starting from digit 0.

we optimize MetFlow starting from the prior given by the encoder (mean-field approximation) and
targetting posterior pθ(·|x). Note that during all this optimization procedure, the initial distribution of
MetFlow is fixed to be the encoder, which corresponds to freeze the corresponding parameters. This is
a simple generalization of our method to amortized inference. In the following, we use Barker ratios.
The additional results are given by Figures 8.14 to 8.18.

The encoder represents just the mean-field approximation here, while encoder and NAF represent
the total variational distribution learnt by the VAE described above.

8.10.4 Additional setting of experiments

So far, we have described two settings. The first one, that we have called deterministic, in which
the transformations take no input “innovation noise”, but all have different sets of parameters. The
second one, pseudo random, defines one global transformation Tφ with a unique set of parameters φ,
considers K initially sampled at random “innovation noise” u1, . . . , uK , and considers densities h1:K

such that the noise resampled at every step of the optimization is “fixed”. It then learns the parameters
for the global transformation using the considered transformations Tφ,i ← Tφ(·, ui) , i ∈ {1, . . . ,K}.
We can consider here a last setting, fully random, on which a global transformation Tφ with a unique
set of parameters φ is considered. However, now, we consider a unique density h (typically Gaussian)
to sample the “innovation noise” at every step of the optimization - note that this is still covered by
Algorithm 8.9.2. This allow us to consider properly random transformations, and looks more like the
classical framework of MCMC. Even if this introduces more noise in our stochastic gradient descent, it
encourages MetFlow kernels trained to incorporate a lot more diversity. This can be seen with the two
experiments described before, for mixture of different digits in MNIST, or the inpainting experiments.

204 CHAPTER 8. METFLOW: MCMC & VI

Initial sample MetFlow

Initial sample Encoder

Initial sample Encoder and NAF

Figure 8.15: Gibbs inpainting experiments starting from digit 3.

Initial sample MetFlow

Initial sample Encoder

Initial sample Encoder and NAF

Figure 8.16: Gibbs inpainting experiments starting from digit 9.

Initial sample MetFlow

Initial sample Encoder

Initial sample Encoder and NAF

Figure 8.17: Gibbs inpainting experiments starting from digit 6.

Initial sample MetFlow

Initial sample Encoder

Initial sample Encoder and NAF

Figure 8.18: Gibbs inpainting experiments starting from digit 4.

8.10. EXPERIMENTS 205

Even though experiments can show more diversity, it is important to note that they typically require a
longer number of epoches to reach convergence. We give in Section 8.10.4 a comparison of the three
settings for a mixture of digits problem. As we can see, the diversity introduced by our method is
highest in the fully random setting. We can see a wider variety of 3, even though other digits tend to
appear more when we decode them as well.

Figure 8.19: Comparison of the different settings described for a mixture of digits experiment. From
left to right, deterministic setting, pseudo-random setting, fully random setting.

206 CHAPTER 8. METFLOW: MCMC & VI

Chapter 9

Monte Carlo Variational Auto Encoders

Achille Thin1, Nikita Kotelevskii2, Arnaud Doucet3, Alain Durmus4, Eric Moulines1,
Maxim Panov5

Abstract

Variational auto-encoders (VAE) are popular deep latent variable models which are trained by max-
imizing an Evidence Lower Bound (ELBO). To obtain tighter ELBO and hence better variational
approximations, it has been proposed to use importance sampling to get a lower variance estimate of
the evidence. However, importance sampling is known to perform poorly in high dimensions. While it
has been suggested many times in the literature to use more sophisticated algorithms such as Annealed
Importance Sampling (AIS) and its Sequential Importance Sampling (SIS) extensions, the potential
benefits brought by these advanced techniques have never been realized for VAE: the AIS estimate
cannot be easily differentiated, while SIS requires the specification of carefully chosen backward Markov
kernels. In this paper, we address both issues and demonstrate the performance of the resulting Monte
Carlo VAEs on a variety of applications.

9.1 Introduction

Variational Auto-Encoders (VAE) introduced by [KW13a] are a very popular class of methods in
unsupervised learning and generative modelling. These methods aim at finding a parameter θ maximizing
the marginal log-likelihood pθ(x) =

∫
pθ(x, z)dz where x ∈ RN is the observation and z ∈ Rd is the

latent variable. They rely on the introduction of an additional parameter φ and a family of variational
distributions qφ(z|x). The joint parameters {θ, φ} are then inferred through the optimization of the
Evidence Lower Bound (ELBO) defined as

L(θ, φ) =

∫
log

(
pθ(x, z)

qφ(z|x)

)
qφ(z|x)dz = log pθ(x)−DKL

(
qφ(z|x) ‖ pθ(z|x)

)
6 log pθ(x) .

The design of expressive variational families has been the topic of many works and is a core ingredient
in the efficiency of VAE [RM15b; Kin+16a]. Another line of research consists in using positive unbiased
estimators p̂θ(x) of the loglikelihood pθ(x) for qφ, i.e. Eqφ [p̂θ(x)] = pθ(x). Indeed, as noted in [MR16],
it follows from Jensen’s inequality that

L(θ, φ) = Eqφ [log p̂θ(x)] 6 log pθ(x) . (9.1)

1Centre de Mathématiques Appliquées, UMR 7641, Ecole polytechnique, France
2CDISE, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
3Department of Statistics, University of Oxford
4Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France
5CS Departement, HSE University, Russian Federation

207

208 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

A Taylor expansion shows that

L(θ, φ) ≈ log pθ(x)− 1

2
varqφ

[
p̂θ(x)

pθ(x)

]
;

see e.g. [Mad+17; DS18] for formal results. Hence the ELBO becomes tighter as the variance of the
estimator decreases.

A common method to obtain an unbiased estimate is built on importance sampling; i.e. Ẑ(=

)n−1
∑n

i=1[pθ(x, zi)/qφ(zi|x)] for zi
i.i.d.∼ qφ(·|x). In particular, combined with (9.1), we obtain the

popular Importance Weighted Auto Encoder (IWAE) proposed by [BGS15]. However, it is expected
that the relative variance of this importance-sampling based estimator typically increases with the
dimension of the latent z. To circumvent this issue, we suggest in this paper to consider other
estimates of the evidence which have shown great success in the Monte Carlo literature. In particular,
Annealed Importance Sampling (AIS) [Nea01b; Wu+16], and its Sequential Importance Sampling
(SIS) extensions [DDJ06b] define state-of-the-art estimators of the evidence. These algorithms rely on
an extended target distribution for which an efficient importance distribution can be defined using
non-homogeneous Markov kernels.

It has been suggested in various contributions that AIS could be useful to train VAE [SKW15a;
Wu+16; Mad+17; WKN20b]. However, to the authors knowledge, no contribution discusses how
an unbiased gradient of the resulting ELBO could be obtained. Indeed, the main difficulty in this
computation arises from the MCMC transitions in AIS. As a result, when this estimator is used,
alternatives to the ELBO (9.1) have often been considered, see e.g. [DF19].

Whereas AIS requires using MCMC transition kernels, SIS is more flexible and can exploit Markov
transition kernels which are only approximately invariant w.r.t. to a given target distribution, e.g. unad-
justed Langevin kernels. In this case, the construction of the augmented target distribution, which is at
the core of the estimator, requires the careful selection of a class of auxiliary ‘backward’ Markov kernels.
[SKW15a; RTB16; Maa+16; Goy+17; Hua+18b] propose to learn such auxiliary kernels parameterized
with neural networks through the ELBO. However, as illustrated in our simulations, this comes at an
increase in the overall computational cost.

Our contributions. The contributions of this paper are as follows:

(i) We show how to obtain an SIS-based ELBO relying on undadjusted Langevin dynamics which,
contrary to [SKW15a; Goy+17; Hua+18b], does not require introducing and optimizing backward
Markov kernels. In addition, an unbiased gradient estimate of the resulting ELBO which exploits
the reparameterization trick is derived.

(ii) We propose an unbiased gradient estimate of the ELBO computed based on AIS. At the core of
this estimate is a non-standard representation of Metropolis–Hastings type kernels which allows us
to differentiate them. This is combined to a variance reduction technique for improved efficiency.

(iii) We apply these new methods to build novel Monte Carlo VAEs, and show their efficiency on
real-world datasets.

All the theoretical results are detailed in the supplementary material.

9.2 Variational Inference via Sequential Importance Sampling

9.2.1 SIS estimator

The design of efficient proposal importance distributions has been proposed in [Cro98; Nea01b] starting
from an annealing schedule, and was later extended by [DDJ06b]. Let {γk}Kk=0 be a sequence of

9.2. VARIATIONAL INFERENCE VIA SEQUENTIAL IMPORTANCE SAMPLING 209

unnormalized “bridge” densities satisfying γ0(z) = qφ(z|x), γK(z) = pθ(x, z). Note that γK is not
normalized, in contrast to γ0. Here we set

γk(z) = qφ(z|x)1−βkpθ(x, z)
βk (9.2)

for an annealing schedule 0 = β0 < · · · < βK = 1, but alternative sequences of intermediate densities
could be considered. At each iteration, SIS samples a non-homogeneous Markov chain use the transition
kernels {Mk}Kk=1. In this section, we assume that Mk admits a positive transition density mk, such
that mk leaves γk invariant, i.e.

∫
γk(z)mk(z, z

′)dz = γk(z
′), or is only approximately invariant. In

particular, mk typically depends on the data x. However, to simplify notation, this dependence is
omitted.

Based on this sequence of transition densities, SIS considers the joint density on the path space
z0:K ∈ Rd(K+1)

qKφ (z0:K |x) = qφ(z0|x)
K∏
k=1

mk(zk−1, zk) , (9.3)

where zi:j = (zi, . . . , zj) for 0 6 i 6 j. By construction, we expect the K-th marginal qKφ (zK |x) =∫
qKφ (z0:K |x)dz0:K−1 to be close to pθ(zK |x). However, we cannot use importance sampling to correct

for the discrepancy between these two densities, as qKφ (zK |x) is typically intractable. To bypass this
problem, we introduce another density on the path space

pKθ (x, z0:K) = pθ(x, zK)
0∏

k=K−1

`k(zk+1, zk) , (9.4)

where {`k}K−1
k=0 is a sequence of auxiliary positive transition densities. Note that in this case, the

K-th marginal
∫
pKθ (x, z0:K)dz0:K−1 is exactly pθ(x, zK). Using now importance sampling on the path

space, we obtain the following unbiased SIS estimator [DDJ06b; SKW15a] by sampling independently
zi0:K ∼ qKφ (·|x) and computing

Ẑ(=)
1

n

n∑
i=1

wK(zi0:K) , wK(z0:K) =
pKθ (x, z0:K)

qKφ (z0:K |x)
. (9.5)

9.2.2 AIS estimator

The selection of the kernel {`k}K−1
k=0 has a large impact on the variance of the estimator. The optimal

reverse kernels `k minimizing the variance of Ẑ() are given by

`k−1(zk, zk−1) =
qφ,k−1(zk−1|x)mk(zk−1, zk)

qφ,k(zk|x)
, (9.6)

where qφ,k(zk|x) =
∫
qKφ (z0:K |x)dz−k0:K is the k-th marginal of qKφ ; see [DDJ06b]. However, the resulting

estimator Ẑ() is usually intractable. An approximation to (9.6) leading to a tractable estimator is
provided by AIS [Cro98; Nea01b]. When mk is γk-invariant, then, by assuming that qφ,k ≈ qφ,k−1 ≈ γk
in (9.6), we obtain

`k−1(zk, zk−1) =
γk(zk−1)mk(zk−1, zk)

γk(zk)
. (9.7)

We refer to this kernel as the reversal ofmk. In particular, ifmk is γk-reversible, i.e. γk(zk−1)mk(zk−1, zk) =
γk(zk)mk(zk, zk−1), then `k−1 = mk. Note that the weights (9.5) can be computed using the decompo-
sition wK(z0:K) =

∏K
k=1wk(zk−1, zk) with

wk(zk−1, zk) =
γk(zk)`k−1(zk, zk−1)

γk−1(zk−1)mk(zk−1, zk)
, (9.8)

210 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

which simplifies when using (9.7) as

wk(zk−1, zk) = γk(zk−1)/γk−1(zk−1) . (9.9)

In contrast to previous works, we will consider in the next section transition kernels mk which are only
approximately γk-invariant but still build `k−1 in the spirit of (9.7).

9.2.3 SIS-ELBO using unadjusted Langevin

For any k, we consider the Langevin dynamics associated to γk and the corresponding Euler-Maruyama
discretization. Then, we choose for mk the transition density associated to this discretization

mk(zk−1, zk) = N(zk; zk−1 + η∇ log γk(zk−1), 2η Id) . (9.10)

Note that sampling qKφ boils down to sampling Z0 ∼ qφ and defining the Markov chain {Zk}k6K
recursively by

Zk = Zk−1 + η∇ log γk(Zk−1) +
√

2ηUk , (9.11)

where Uk ∼ N(0, Idd). Moreover, as the continuous Langevin dynamics is reversible w.r.t. γk, this
suggests that we can approximate the reversal `k−1 of mk by mk directly as in AIS and thus select for
any k, `k−1 = mk as done in [Hen+20]. However, in this case, the weights wk(zk−1, zk) do not simplify
to γk(zk−1)/γk−1(zk−1) as mk is not exactly γk-invariant and we need to rely on the general expression
given in (9.8). This approach was concurrently and independently proposed in [WKN20b] but they do
not discuss gradient computations therein.

Based on (9.1) and (9.5), we introduce

LSIS =

∫
log

(
K∏
k=1

wk(zk−1, zk)

)
qKφ (z0:K |x)dz0:K . (9.12)

We consider a reparameterization of (9.12) based on the Langevin mappings associated with target γk
given by

Tk,u(zk−1) = zk−1 + η∇ log γk(zk−1) +
√

2ηu . (9.13)

An easy change of variable based on the identity Zk = Tk,Uk(Zk−1) in (9.11) shows that LSIS can be
written as ∫

log

(
K∏
k=1

wk(zk−1, zk)

)
qφ(z0|x)ϕd,K(u1:K)dz0du1:K ,

where ϕd stands for the density of the d-dimensional standard Gaussian distribution, ϕd,K(u1:K) =∏K
i=1 ϕd(ui), and we write zk = Tk,uk ◦ · · · ◦T1,u1(z0) =©k

i=1Ti,ui(z0). By (9.5) and as `k−1 = mk, our
objective thus finally writes

LSIS(θ, φ;x) =

∫
qφ(z0|x)ϕd,K(u1:K) (9.14)

× log

(
pθ(x, zK)

∏K
k=1mk(zk, zk−1)

qφ(z0|x)
∏K
k=1mk(zk−1, zk)

)
dz0du1:K .

This defines the reparameterizable Langevin Monte Carlo VAE (L-MCVAE). The algorithm to obtain an
unbiased SIS estimate of pθ(x) is described in Algorithm 13. This estimate is related to the one presented
in [CDS18b], however this work builds on a deterministic dynamics which limits the expressivity of the
induced variational approximation. In contrast, we rely here on a stochastic dynamics. While we limit
ourselves here to undajusted (overdamped) Langevin dynamics, this could also be easily extended to
unajusted underdamped Langevin dynamics [Mon20].

9.3. VARIATIONAL INFERENCE VIA ANNEALED IMPORTANCE SAMPLING 211

Algorithm 13 Langevin Monte Carlo VAE
Input: Number of steps K, initial distribution qφ, unnormalized target distribution pθ, step-size η,
annealing schedule {βk}Kk=0.
Output: SIS estimator W of log pθ(x).

Draw z0 ∼ qφ(·|x);
Set W = − log qφ(z0|x);
for k = 1 to K do

Draw uk ∼ ϕd;
Set γk(·) = βk log pθ(x, ·) + (1− βk) log qφ(·|x);
Set zk = zk−1 + η∇ log γk(zk) +

√
2ηuk;

Set W = W + logmk(zk, zk−1)− logmk(zk−1, zk);
end for
Set W = W + log pθ(x, zK);
Return W

9.3 Variational Inference via Annealed Importance Sampling

In Section 9.2.3, we derived the SIS estimate of the evidence computed using ULA kernels Mk, whose
invariant distribution approximates γk. We can differentiate the resulting ELBO and exploit the
reparametrization trick as these kernels admit a density mk w.r.t. Lebesgue measure. When computing
the AIS estimates, we need Markov kernels Mk that are γk-invariant. Such Markov kernels Mk most
often rely on a Metropolis–Hastings (MH) step and therefore do not typically admit a transition density.
While this does not invalidate the expression of the AIS estimate presented earlier, it complicates
significantly the computation of an unbiased gradient estimate of the corresponding ELBO. In this
section, we propose a way to compute an unbiased estimator of the ELBO gradient for MH Markov
kernels. We use here elementary measure-theoretical notations which are recalled in Section 9.6

9.3.1 Differentiating Markov kernels

Markov kernel. Let B(Rd) denote the Borelian σ-field associated to Rd. A Markov kernel M is a
function defined on Rd×B(Rd), such that for any z ∈ Rd, M(z, ·) is a probability distribution on B(Rd),
i.e. M(z,A) is the probability starting from z to hit the set A ⊂ Rd. The simplest is “deterministic”, in
which case Q(z,A) = δT(z)(A), where T is a measurable mapping on Rd and δy is the Dirac mass at y.
Instead of a single mapping T, we can consider a family of “indexed” mappings

{
Tu : u ∈ Rdu

}
. If g is

a p.d.f on RdU , we consider

M(z,A) =

∫
1A(Tu(z))g(u)du .

To sample M(z, ·), we first sample u ∼ g and then apply the mapping Tu(z). If d = du, we consider
the function Gz : Rd 7→ Rd defined for all z ∈ Rd by

Gz : u 7→ Gz(u) = Tu(z) (9.15)

If Gz is a diffeomorphism, then by applying the change of variables formula, we obtain

M(z,A) =
∫
1A
(
Gz(u)

)
g(u)du (9.16)

=
∫
1A(z′)m(z, z′)dz′ ,

where, denoting JG−1
z

(z′) is the absolute value of the Jacobian determinant of G−1
z evaluated at z′, we

set
m(z, z′) = JG−1

z
(z′)g

(
G−1
z (z′)

)
. (9.17)

212 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

In this case, the Markov kernel has a transition density m(z, z′). This is the setting considered in the
previous section.

Finally, some Markov kernels have both a deterministic and a continuous component. This is for
example the case of Metropolis–Hastings (MH) kernels:

M(z,A) =

∫
U
Qu(z,A)g(u)du , where (9.18)

Qu
(
z,A

)
= αu(z)δTu(z)(A) +

{
1− αu(z)

}
δz(A) ,

with αu(z) = α
(
z,Tu(z)

)
is the acceptance function and Tu : Rd → Rd is the proposal mapping. In the

sequel, we denote α1
u(z) = αu(z) and α0

u(z) = 1 − αu(z), and set T0
u(z) = z. With these notations,

(9.18) can be rewritten in a more concise way

Qu(z,A) =

1∑
a=0

αau(z)δTau(z)(A) . (9.19)

To sample M(z, ·), we first draw u ∼ g and then compute the proposal y = Tu(z). With probability
αu(z), the next state of the chain is set to z′ = y, and z′ = z otherwise. If Gz defined in (9.15) is a
diffeomorphism, then the Metropolis–Hasting kernel may be expressed as

M(z,A) =

∫
α(z, z′)m(z, z′)1A(z′)dz′ +

(
1− ᾱ(z)

)
δz(A),

where ᾱ(z) =
∫
α(z, z′)m(z, z′)dz′ is the mean acceptance probability at z (the probability of accepting

a move) and m(z, z′) is defined as in (9.17). In MH-algorithms, the acceptance function α : R2d → [0, 1]
is chosen so that M is π-reversible π(dz)M(z, dz′) = π(dz′)M(z′, dz), where π is the target distribution.
This implies, in particular, that M is π-invariant. Standard MH algorithms use α(z, z′) = 1 ∧
π(z′)m(z′, z)/π(z)m(z, z′); see [Tie94].

To illustrate these definitions and constructions, consider first the symmetric Random Walk Metropo-
lis Algorithm (RWM). In this case, dU = d and g← ϕd, where ϕd is the d-dimensional standard Gaussian
density. The proposal mapping is given by

GRWM
z (u) = TRWM

u (z) = z + Σ1/2u ,

where Σ is a positive definite matrix, and the acceptance function is given by αRWM
u (z) = 1 ∧(

π
(
TRWM
u (z)

)
/π(z)

)
.

Consider now the Metropolis Adjusted Langevin Algorithm (MALA); see [Bes94a]. Assume that
z 7→ log π(z) is differentiable and denote by ∇ log π(z) its gradient. The Langevin proposal mapping
TMALA
u is defined by

GMALA
z (u) = TMALA

u (z) = z + η∇ log π(z) +
√

2ηu . (9.20)

We set g← ϕd and αMALA
u (z) is the acceptance given by

αMALA
u (z) = 1 ∧ π

(
TMALA
u (z)

)
mη

(
TMALA
u (z), z

)
π(z)mη

(
z,TMALA

u (z)
) , (9.21)

where mη(z, z
′) = η−1/2ϕd

(
η−1/2{z′ − TMALA

0 (z)}
)
, similarly to (9.10).

Lemma 71. For all z ∈ Rd, GMALA
z is a C1-diffeomorphism. Moreover, assume that log π is L-smooth

with L > 0, i.e. for z, z′ ∈ Rd, ‖∇ log π(z′) − ∇ log π(z) 6 L‖z′ − z‖. Then, if 0 6 η < L−1, for all
u ∈ Rd, TMALA

u defined in (9.20) is a C1-diffeomorphism.

The proof of Lemma 71 is postponed to Section 9.8.

9.3. VARIATIONAL INFERENCE VIA ANNEALED IMPORTANCE SAMPLING 213

9.3.2 Differentiable AIS-based ELBO

We now generalize the derivation of Section 9.2.1 to handle the case where Mk and its reversal do not
admit transition densities. In this case, the proposal and unnormalized target distributions are defined
by

QK
φ (dz0:K |x) = qφ(z0|x)dz0

K∏
k=1

Mk(zk−1, dzk) , (9.22)

Pun
θ (x,dz0:K) = pθ(x, zK)dzK

1∏
k=K

Lk−1(zk, dzk−1) ,

where we define the reversal Markov kernel Lk−1 by

γk(zk−1)dzk−1Mk(zk−1, dzk) = γk(zk)dzkLk−1(zk,dzk−1) .

We consider then the AIS estimator presented in Section 9.2.1 in (9.5) by sampling independently
zi0:K ∼ QK

φ (·|x) and with wK(z0:K) =
∏K
k=1wk(zk−1), wk(zk−1) = γk(zk−1)/γk−1(zk−1). A rigorous

proof of the unbiasedness of the resulting estimator can be found in the Supplementary Material and is
based on the formula

Z =

∫
wK(z0:K)QK

φ (dz0:K |x) . (9.23)

In the sequel, we use Metropolis Adjusted Langevin Algorithm (MALA) kernels {Mk}Kk=1 targeting γk
for each k ∈ {1, . . . ,K}. By construction, the Markov kernel Mk is reversible w.r.t. γk and we set for
the reversal kernel Lk−1 = Mk. Note that we could easily generalize to other cases, especially inspired
by recent works on non-reversible MCMC algorithms [Thi+20a].

For k ∈ {1, . . . ,K}, we use the representation of MALA kernel Mk outlined in (9.18) with proposal
mapping Tk,u and acceptance function αk,u defined as in (9.20) and (9.21) with π ← γk. We set

Qk,u(z, dz′) =
1∑

a=0

αak,u(z)δTak,u(z)(dz
′) . (9.24)

By construction, the MALA kernelMk (see (9.18)) writesMk(z, dz′) =
∫
Qk,u(z, dz′)ϕd(u)du. Plugging

this representation into (9.22), we get

QK
φ (dz0:K |x) =

∫ K∏
k=1

Qk,uk(zk−1,dzk)qφ(z0|x)ϕd,K(u1:K)dz0du1:K ,

writing ϕd,K(u1:K) =
∏K
i=1 ϕd(ui). Eq. (9.24) suggests to consider the extended distribution on

(z0:K , a1:K , u1:K):

QK
φ (dz0:K , a1:K ,du1:K |x) = qφ(z0|x)

K∏
k=1

αakk,uk

(
zk−1

) K∏
k=1

δT
ak
k,uk

(zk−1)(dzk)ϕd,K(u1:K)dz0du1:K ,

which admits again as a marginal QK
φ (dz0:K |x). Note that the variables a1:K correspond to the binary

outcomes of the K A/R steps. By construction, z1:K are deterministic functions of z0, a1:K and u1:K :
for each k ∈ {1, . . . ,K}, zk =©k

i=1Tai
i,ui

(z0).
Set wK(z0:K) =

∏K
k=1wk(zk−1), and

A(z0, a1:K , u1:K) =
K∏
k=1

αakk,uk

(k−1
©
i=1

Tai
i,ui

(z0)
)
,

W (z0, a1:K , u1:K) = log

K∏
k=1

wk

(k−1
©
i=1

Tai
i,ui

(z0)
)
.

214 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

Given z0 and u1:K , A(z0, a1:K , u1:K) is the conditional distribution of the A/R random variables a1:K .
It is easy to sample this distribution recursively: for each k ∈ {1, . . . ,K} we sample ak from a Bernoulli
distribution of parameter αk,uk(zk−1) and we set zk = Tak

k,uk
(zk−1). Eqs. (9.5) and (9.9) naturally lead

us to consider the ELBO

LAIS =

∫∑
a1:K

QK
φ (dz0:K , a1:K ,du1:K |x) log

[
wK(z0:K)

]
=

∫ ∑
a1:K

qφ(z0|x)A(z0, a1:K , u1:K)

×W (z0, a1:K , u1:K)ϕd,K(u1:K)dz0du1:K ,

where in the last line we have integrated w.r.t. z1:K . The fact that LAIS is an ELBO stems immediately
from (9.23), by applying Jensen’s inequality. We can optimize this ELBO w.r.t. the different parameters
at stake, even possibly the parameters of the proposal mappings.

We reparameterize the latent variable distribution qφ(z0|x) in terms of a known base distribution
and a differentiable transformation (such as a location-scale transformation). Assuming for simplicity
that qφ(z0|x) is a Gaussian distribution N(z0;µφ(x), σ2

φ(x)), then the location-scale transformation using
the standard Normal as a base distribution allows us to reparameterize z0 as z0 = µφ(x) + σφ(x) · u0 =
Vφ,x(u0), with u0 ∼ ϕd. Using this reparameterization trick, we can write ∇LAIS = ∇LAIS1 +∇LAIS2

with

∇LAIS1 =

∫∑
a1:K

A(Vφ,x(u0), a1:K , u1:K)

×∇W (Vφ,x(u0), a1:K , u1:K)ϕd,K+1(u0:K)du0:K ,

∇LAIS2 =

∫∑
a1:K

A(Vφ,x(u0), a1:K , u1:K)W (Vφ,x(u0), a1:K , u1:K)

×∇ logA(Vφ,x(u0), a1:K , u1:K)ϕd,K+1(u0:K)du0:K . (9.25)

The estimation of ∇LAIS1 is straightforward. We sample n independent samples u1:n
0:K ∼ ϕd,K+1 and,

for i ∈ {1, . . . , n}, we set zi0 = Vφ,x(ui0) and then, for k ∈ {1, . . . ,K}, we sample the A/R variable

aik ∼ Ber{α1
k,uik

(zik−1)} and set zik = T
aik
k,uik

(zik−1), see Algorithm 14. Similarly, we then compute

∇̂LAIS2,n = n−1
n∑
i=1

∇W (Vφ,x(ui0), ai1:K , u
i
1:K) .

The expression ∇LAIS2 is the REINFORCE gradient estimator [Wil92] for the A/R probabilities.
Indeed, we have to compute the gradient of the conditional distribution of the A/R variables given
(z0, u0:K), and there is no obvious reparametrization for such purpose (see however [MMT16] for a
possible solution to the problem; this solution was not investigated in this work). To reduce the variance
of the REINFORCE estimator, we rely on control variates, in the spirit of [MR16]. For i ∈ {1, . . . , n},
we define

W̃n,i =
1

n− 1

∑
j 6=i

W (Vφ,x(uj0), aj1:K , u
j
1:K) ,

which is independent of W (Vφ,x(ui0), ai1:K , u
i
1:K) and ∇ logA(Vφ,x(ui0), ai1:K , u

i
1:K) by construction. This

provides the new unbiased estimator of the gradient using

∇̂LAIS2,n = n−1
n∑
i=1

[
W (Vφ,x(ui0), ai1:K , u

i
1:K)− W̃n,i

]
∇ logA(Vφ,x(ui0), ai1:K , u

i
1:K) . (9.26)

Algorithm 14 shows how to compute W and logA.

9.4. EXPERIMENTS 215

Algorithm 14 Annealed Importance Sampling VAE
Input: Number of steps K, proposal mappings {Tk,u}k6K,u∈U, acceptance functions {αk,u}k6K,u∈U,
initial distribution qφ, unnormalized target distribution pθ, annealing schedule {βk}Kk=0.
Output: AIS estimator W of log pθ(x), sum logA of the A/R log probabilities.

Draw z0 ∼ qφ(·|x);
Set W = 0;
Set logA = 0;
for k = 1 to K do

Draw uk ∼ ϕd;
Draw ak ∼ Ber(αk,uk

(
zk−1)

)
;

if ak = 1 (Accept) then
Set zk = zk−1 + η∇ log γk(zk) +

√
2ηuk;

else
zk = zk−1;

end if
Compute logwk(zk−1) =

(βk − βk−1)
(
log pθ(x, zk−1)− log qφ(zk−1|x)

)
;

Set W = W + logwk(zk−1);
Set logA = logA+ logαakk,uk(zk−1);

end for
Return W, logA

9.4 Experiments

9.4.1 Methods and practical guidelines

In what follows, we consider two sets of experiments1. In the first one, we aim at illustrating the
expressivity and the efficiency of our estimator for VI. In the second, we tackle the problem of
learning VAE: (a) Classical VAE based on mean-field approximation [KW13a]; (b) Importance-weighted
Autoencoder (IWAE, [BGS15]); (c) L-MCVAE given by Algorithm 13; (d) A-MCVAE given by
Algorithm 14. We provide in the following some guidelines on how to tune the step sizes and the
annealing schedules in Algorithm 13 and Algorithm 14.

A crucial hyperparameter of our method is the step size η. In principle, it could be learned by
including it as an additional inference parameter φ and by maximizing the ELBO. However, it is then
difficult to find a good trade-off between having a high A/R ratio and a large step size η at the same
time. Instead, we suggest adjusting η by targeting a fixed A/R ratio ρ. It has proven effective to use a
preconditioned version of (9.11), i.e. Zk = Zk−1 + η �∇ log γk(Zk−1) +

√
2η � Uk with η ∈ Rp, where

we adapt each component of η using the following rule

η(i) = 0.9η(i) + 0.1η0/
(
ε+ std[∂z(i) log pθ(x, z)]

)
. (9.27)

Here std denotes the standard deviation over the batch x of the quantity ∂z(i) log pθ(x, z), and ε > 0.
The scalar η0 is a tuning parameter which is adjusted to target the A/R ratio ρ. This strategy follows
the same heuristics as Adam [KB14]. In the following ρ is set to 0.8 for A-MCVAE and 0.9 for L-MCVAE
(keeping it high for L-MCVAE ensures that the Langevin dynamics stays “almost reversible”, thus
keeping a low variance SIS estimator).

An optimal choice of the temperature schedule {βk}Kk=0 for SIS and AIS is a difficult problem. We
have focused in our experiments on three different settings. First, we consider the temperature schedule
fixed and regularly spaced between 0 and 1. Following [GGA15], the second option is the sigmoidal
tempering scheme where βk = (β̃k− β̃1)/(β̃K− β̃1) with, β̃k = σ

(
δ(2k/K−1)

)
, σ is the sigmoid function

1The code to reproduce all of the experiments is available online at https://github.com/stat-ml/mcvae/.

https://github.com/stat-ml/mcvae/

216 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

Figure 9.1: Visualization of the posterior approximation given after optimization of different bounds for
toy generation process. Top row, from left to right: True posterior, VAE posterior, IWAE posterior.
Bottom row, from left to right: VI with RealNVP posterior, A-MCVAE posterior, L-MCVAE posterior.

and δ > 0 is a parameter that we optimize during the training phase. The last schedule consists in
learning the temperatures {βk}Kk=0 directly as additional inference parameters φ.

9.4.2 Toy 2D example and Probabilistic Principal Component Analysis

In the following two examples, we fix the parameters θ of the likelihood model and apply Algorithm 13
and Algorithm 14 to perform VI to sample from z 7→ pθ(z|x). Consider first a toy hierarchical example
where we generate some i.i.d. data x = (xi)

N
i=1 ∈ RN from the i.i.d. latent variables z = (zi)

N
i=1 ∈ R2N

as follows for ξ > 0 xi|zi ∼ N(ξ · (‖zi‖2 + ζ), σ2) = pθ(xi|zi). We consider the variational approximation
as qφ(z|x) = N

(
z;µφ(x), σφ(x)2 Id

)
, where µφ(x), σφ(x) ∈ Rd are the outputs of a fully connected

neural network with parameters φ. We compare these algorithms to VI using Real-valued Non-Volume
Preserving transformation (RealNVP, [DSB16]).

Figure 9.1 displays the VI posterior approximations corresponding to the different schemes for a
given observation x. It can be observed that MCVAE benefit from flexible variational distributions
compared to other classical schemes, which mostly fail to recover the true posterior. Additional results
on the estimation of the parameters ξ, ζ, given in the supplementary material, further support our
claims; see Section 9.7.1.

We now illustrate the performance of MCVAE on a probabilistic principal component analysis
problem applied to MNIST [SM08b], as we can access in this case the exact likelihood and its gradient.
We follow the set-up of [Rui+21], Section 6.1. We consider here a batch of size N = 100 for the model
pθ(x, z) = N(z; 0, Idd)N(x; θ0 + θ1z, σ

2 Idp), with d = 100 and p = 784. We fix arbitrarily θ0, θ1, and fit
an amortized variational distribution qφ(z|x) by maximizing the IWAE bound w.r.t. φ with K = 100
importance samples for a large number of epochs. The distribution qφ(z|x) = N(z;µφ(x), diag(σ2

φ(x)))
is a mean-field Gaussian distribution where µφ, σφ are linear functions of the observation x.

We compare the Langevin SIS estimator (L-MCVAE) of the log evidence log pθ(x) with Langevin

9.4. EXPERIMENTS 217

−18

−16

−14

−12

a b c d e

3.0

3.5

4.0

4.5

5.0

Figure 9.2: Representation of the different estimators (top) and their gradient (bottom) of the true log
likelihood. From left to right, a/ L-MCVAE, K = 5, b/ L-MCVAE, K = 10, c/ A-MCVAE, K = 5, d/
A-MCVAE, K = 10, e/ A-MCVAE, K = 5 with control variates.

auxiliary kernels as described in Section 9.2.3, and the Langevin AIS estimate (A-MCVAE). Moreover,
we also compare the gradients of these quantities w.r.t. the parameters θ0, θ1.

Figure 9.2 summarises the results with boxplots computed over 200 independent samples of each
estimator. The quantity reported on the first boxplot corresponds to the Monte Carlo samples of
log p̂θ(x)− log pθ(x). One the one hand, we note that the SIS estimator has larger variance than AIS,
and that the latter achieves a better ELBO. Moreover, in both cases, increasing the number of steps
K tightens the bound. On the other hand, the estimator of the gradient of AIS is noisier than that
of SIS, even though variance reduction techniques allows us to recover a similar variance. We also
present in the supplementary material the Langevin SIS estimator using auxiliary backward kernels
learnt with neural networks (as done in previous contributions); see Section 9.7.2. The auxiliary neural

218 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

backward kernels are set as l(z, z′) = N(z′;µψ(z),diag(σ2
ψ(z))), µψ, σψ ∈ Rd, where the parameters ψ

are learnt through the SIS ELBO, similarly to [Hua+18b]. The variance of the associated estimator
and their gradients are larger than that of SIS using the approximate reversals as backward kernels; i.e.
`k−1 = mk.

1 3 5 10

Transitions

−86.0

−85.5

−85.0

−84.5

−84.0

L
og

lik
el

ih
o

o
d

L-MCVAE

IWAE

Figure 9.3: Log-likelihood of L-MCVAE depending on the number of Langevin steps K. Increasing K
improves performance, however at the expense of the computational complexity.

9.4.3 Numerical results for image datasets

Table 9.1: Results of the different models on MNIST. A more detailed version of this table is included
in the supplementary material.

negative ELBO estimate NLL estimate
n. of epochs 10 30 100 10 30 100
VAE 95.26 ± 0.49 91.58 ± 0.27 89.70 ± 0.19 89.83 ± 0.59 86.86 ± 0.26 85.22 ± 0.07
IWAE,
K = 10

91.42 ± 0.21 88.56 ± 0.07 87.16 ± 0.19 88.54 ± 0.27 86.07 ± 0.1 84.82 ± 0.1

IWAE,
K = 50

90.34 ± 0.27 87.5 ± 0.16 86.05 ± 0.11 89.4 ± 0.25 86.54 ± 0.15 85.05 ± 0.1

L-MCVAE,
K = 5

96.62 ± 3.24 88.58 ± 0.75 87.51 ± 0.41 90.59 ± 2.01 85.68 ± 0.49 84.92 ± 0.24

L-MCVAE,
K = 10

96.78 ± 1.06 87.99 ± 0.71 86.8 ± 0.66 91.33 ± 0.61 85.47 ± 0.46 84.58 ± 0.39

A-MCVAE,
K = 3

96.21 ± 3.43 88.64 ± 0.78 87.63 ± 0.42 90.42 ± 2.34 85.77 ± 0.65 85.02 ± 0.37

A-MCVAE,
K = 5

95.55 ± 2.96 87.99 ± 0.57 87.03 ± 0.27 90.39 ± 2.21 85.6 ± 0.67 84.84 ± 0.38

VAE with
RealNVP 95.23 ± 0.33 91.69 ± 0.15 89.62 ± 0.17 89.98 ± 0.24 86.88 ± 0.05 85.23 ± 0.18

9.4. EXPERIMENTS 219

0 20 40 60 80

Epoch

−90

−88

−86

−84

L
og

lik
el

ih
o

o
d

L-MCVAE

A-MCVAE

VAE

IWAE

Figure 9.4: Evolution of the held-out loglikelihood during training for A-MCVAE, L-MCVAE, IWAE
and VAE on MNIST.

Table 9.2: Results of the different models on CelebA. A more detailed version of this table is included
in the supplementary material. 11400 must be added to all scores in this table.

negative ELBO - 11400+ NLL - 11400+
n. of epochs 10 30 100 10 30 100
VAE 23.78 ± 1.95 17.99 ± 0.4 14.72 ± 0.16 17.35 ± 1.7 12.68 ± 0.62 10.11 ± 0.32
IWAE,
K = 10

20.59 ± 0.71 15.45 ± 0.52 12.2 ± 0.3 18.25 ± 0.6 13.18 ± 0.42 10.14 ± 0.31

IWAE,
K = 50

19.05 ± 0.39 13.59 ± 0.5 10.48 ± 0.89 19.08 ± 0.42 13.17 ± 0.54 10.12 ± 0.86

L-MCVAE,
K = 5

21.61 ± 1.48 12.72 ± 0.43 11.6 ± 0.37 16.42 ± 1.47 9.62 ± 0.47 8.72 ± 0.4

L-MCVAE,
K = 10

20.7 ± 1.15 11.81 ± 0.34 10.6 ± 0.23 17.0 ± 1.87 9.29 ± 0.73 8.24 ± 0.52

A-MCVAE,
K = 3

21.59 ± 1.5 13.94 ± 0.42 12.84 ± 0.3 16.64 ± 1.37 10.98 ± 0.48 9.95 ± 0.3

A-MCVAE,
K = 5

20.95 ± 1.18 12.42 ± 0.42 11.13 ± 0.37 17.42 ± 1.49 9.97 ± 0.59 8.82 ± 0.57

VAE with
RealNVP 15.12 ± 0.48 13.63 ± 0.27 12.58 ± 0.61 10.42 ± 0.33 9.04 ± 0.26 8.98 ± 0.2

Following [Wu+16], we propose to evaluate our models using AIS (not to be confused with the
proposed AIS-based VI approach) to get an estimation of the negative log-likelihood. The base
distribution is the distribution output by the encoder, and we perform K steps of annealing to compute
the estimator of the likelihood, as given by (9.5). In practice, we use K = 5 HMC steps with 3 leapfrogs
for evaluating our models.

We evaluate our models on three different datasets: MNIST, CIFAR-10 and CelebA. All the models
we compare share the same architecture: the inference network qφ is given by a convolutional network
with 8 convolutional layers and one linear layer, which outputs the parameters µφ(x), σφ(x) ∈ Rd of a

220 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

Table 9.3: Results of the different models on CIFAR. A more detailed version of this table is included
in the supplementary material. 2800 must be added to all scores in this table.

negative ELBO - 2800+ NLL - 2800+
n. of epochs 10 30 100 10 30 100
VAE 69.57 ± 0.08 69.55 ± 0.51 68.84 ± 0.06 68.51 ± 0.07 68.41 ± 0.33 67.9 ± 0.03
IWAE,
K = 10

69.82 ± 0.03 69.35 ± 0.03 69.36 ± 0.36 68.56 ± 0.03 68.0 ± 0.03 68.02 ± 0.4

IWAE,
K = 50

69.94 ± 0.08 69.55 ± 0.04 69.43 ± 0.03 69.15 ± 0.15 68.37 ± 0.18 67.93 ± 0.02

L-MCVAE,
K = 5

70.62 ± 0.41 68.55 ± 0.18 68.09 ± 0.1 69.15 ± 0.38 67.73 ± 0.07 67.5 ± 0.07

L-MCVAE,
K = 10

70.99 ± 0.59 68.36 ± 0.04 68.03 ± 0.0 69.8 ± 0.67 67.76 ± 0.04 67.51 ± 0.03

A-MCVAE,
K = 3

69.97 ± 0.99 68.48 ± 0.29 68.18 ± 0.16 69.26 ± 0.76 67.77 ± 0.18 67.55 ± 0.1

A-MCVAE,
K = 5

70.1 ± 0.89 68.28 ± 0.2 68.01 ± 0.08 69.23 ± 0.75 67.71 ± 0.15 67.5 ± 0.07

VAE with
RealNVP 70.01 ± 0.12 69.51 ± 0.07 69.19 ± 0.13 68.73 ± 0.05 68.35 ± 0.05 68.05 ± 0.02

factorized Gaussian distribution, while the generative model pθ(·|z) is given by another convolutional
network πθ, where we use nearest neighbor upsamplings. This outputs the parameters for the factorized
Bernoulli distribution (for MNIST dataset), that is

pθ(x|z) =

N∏
i=1

Ber
(
x(i)|

(
πθ(z)

)(i))
and similarly the mean of the Gaussian distributions for colored datasets (CIFAR-10, Celeba). We
compare A-MCVAE, L-MCVAE, IWAE, and VAE with different settings. All the models are implemented
using PyTorch [Pas+19] and optimized using the Adam optimizer [KB14] for 100 epochs each. The
training process is using PyTorch Lightning toolkit [Fal19].

First, consider dynamically binarized MNIST dataset [SM08b]. In this case, the latent dimension
is set to d = 64. We present in Table 9.1 the results of the different models at different stages of the
optimization. Moreover, we show on Figure 9.3 the performance of L-MCVAE for different values of
K compared to IWAE baseline. In particular, we see that increasing K increases the performance of
our VAE, however at the expense of an increase in computational cost. We also display on Figure 9.4
the evolution of the held-out loglikelihood for various objectives during training. Adding Langevin
transitions appears to help convergence of the models.

Second, we compare similarly the different models on CelebA and CIFAR, see Table 9.2 and Table 9.3.
In this case, the latent dimension is chosen to be d = 128. Increasing the number of MCMC steps
seems again to improve both the ELBO and the final loglikelihood estimate. In each case, all models
are run with 5 different seeds to compute the presented empirical standard deviation.

9.5 Discussion

We have shown in this article how one can leverage state-of-the-art Monte Carlo estimators of the
evidence to develop novel competitive VAEs by developing novel gradient estimates of the corresponding
ELBOs.

For a given computational complexity, AIS based on MALA provides ELBO estimates which are
typically tighter than SIS estimates based on ULA. However, the variance of the gradient estimates of

9.5. DISCUSSION 221

the AIS-based ELBO (A-MCVAE) is also significantly larger than for the SIS-based ELBO (L-MCVAE)
as it has to rely on REINFORCE gradient estimates. While control variates can be considered to reduce
the variance, this comes at a significant increase in computational cost.

Empirically, L-MCVAE should thus be favoured as it provides both a tighter ELBO than standard
techniques and low variance gradient estimates.

Acknowledgements

The work was partly supported by ANR-19-CHIA-0002-01 “SCAI” and EPSRC CoSInES grant
EP/R034710/1. It was partly carried out under the framework of HSE University Basic Research
Program. The development of a software system for the experimental study of VAEs and its application
to computer vision problems (Section 4) was supported by the Russian Science Foundation grant
20-71-10135. Part of this research has been carried out under the auspice of the Lagrange Center for
Mathematics and Computing.

222 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

Supplementary material

9.6 Notations and definitions

Let (X,X) be a measurable space. A Markov kernel N on X × X is a mapping N : X × X → [0, 1]
satisfying the following conditions:

(i) for every x ∈ X, the mapping N(x, ·) : A 7→ N(x,A) is a probability of on X ,

(ii) for every A ∈ X , the mapping N(·, A) : x 7→ N(x,A) is a measurable function from (X,X) to
([0, 1] ,B([0, 1]), where B([0, 1]) denotes the borelian sets of [0, 1].

Let λ be a positive σ-finite measure on (X,X) and n : X × X → R+ be a nonnegative function,
measurable with respect to the product σ-field X ⊗ X . Then, the application N defined on X×X by

N(x,A) =

∫
A
n(x, y)λ(dy) ,

is a kernel. The function n is called the density of the kernel N w.r.t. the measure λ. The kernel N is
Markovian if and only if

∫
X
n(x, y)λ(dy) = 1 for all x ∈ X.

Let N be a kernel on X×X and f be a nonnegative function. A function Nf : X→ R+ is defined
by setting, for x ∈ X,

Nf(x) =

∫
X

N(x, dy)f(y) .

Let µ be a probability on (X,X). For A ∈ X , define

µN(A) =

∫
X

µ(dx) N(x, A) .

If N is Markovian, then µN is a probability on (X,X).

9.7 Experiences

9.7.1 Toy example

We first describe additional experiments on the toy dataset introduced in Section 9.4.2.
Recall that we generate some i.i.d. data x = (xi)

N
i=1 ∈ RN from the i.i.d. latent variables z =

(zi)
N
i=1 ∈ R2N as follows for η > 0: zi ∼ N(0; Id) and xi | zi ∼ N(η · (‖zi‖+ ζ), σ2) = pθ(xi | zi).
This example, presented for z ∈ R2, easily extends to the case where z lies in Rd, with d increasing

from 2 to 300. We tackle here the problem at estimating the parameter θ = (η, ζ) when d varies.
We show in Figure S5 the error ‖θ̂ − θ‖2 for the different methods. The increased flexibility of the

posterior proves more effective for estimating the true parameters of the generative model.

9.7.2 Probabilistic Principal Component Analysis

We detail the impact of the learnable reverse kernels on the variance of the estimator and looseness of
the ELBO. In our experiments, reverse kernels were given by fully-connected neural networks. We train
K different reverse kernels {lk}K−1

k=0 for the K transitions, each given by a separate neural network, and
amortized over the observation x, similarly to [SKW15a; Hua+18b]. Given the parameters (θ, φ), we
train these kernels for a large number of epochs using the SIS objective (9.14) and the Adam optimizer
[KB14]. In particular, we display in Figure S6 the different estimators to be compared. It is easily seen
that reverse kernels can not provide reasonable and stable density estimates. At the same time, we
observe the variance of the gradient is higher in those models than in the ones we present in the main
text. This motivates our approach bypassing the optimization of the reverse kernels.

9.8. PROOFS 223

0 50 100 150 200 250 300

101

9× 100

1.1× 101

1.2× 101

1.3× 101

1.4× 101

VAE

IWAE

L-MCVAE

A-MCVAE

RealNVP

Figure S5: Squared error for parameter’s estimates, obtained using different models.

a b c d e f g

0

100

200

300

400

500

a b c d e f g

−2.0

−1.5

−1.0

−0.5

Figure S6: Representation of the different estimators (left) and their gradient (right) of the true log
likelihood. From left to right, a/ L-MCVAE, K = 5, b/ L-MCVAE, K = 10, c/ L-MCVAE, K = 1,
learnable reverse, d/ L-MCVAE, K = 2 learnable reverse, e/ A-MCVAE, K = 5, f/ A-MCVAE, K = 10,
g/ A-MCVAE, K = 5 with control variates.

9.7.3 Additional experimental results

We display in this section the full results on MNIST, CelebA and CIFAR respectively of the different
models as well as the effect of the different annealing schemes (respectively in Table 9.4, Table 9.5 and
9.6).

9.8 Proofs

9.8.1 Proof of SIS and AIS Identities

Proposition S72. Let {Γk}Kk=0 be a sequence of distributions on (Rd,B(Rd)), {Mk}Kk=1 and {Lk}K−1
k=0

be Markov kernels. Assume that for each k ∈ {0, . . . ,K − 1}, there exists a positive measurable function
wk : Rd × Rd 7→ R+ such that

Γk(dzk)Lk−1(zk,dzk−1) = Γk−1(dzk−1)Mk(zk−1, dzk)wk(zk−1, zk) . (S28)

Then,

Γ0(dz0)

K∏
k=1

Mk(zk−1,dzk)
K∏
k=1

wk(zk−1, zk) = ΓK(dzK)
1∏

k=K

Lk−1(zk, dzk−1) . (S29)

Proof. We prove by induction that for k ∈ {1, . . . ,K},

Γ0(dz0)

k∏
i=1

Mi(zi−1,dzi)

k∏
i=1

wi(zi−1, zi) = Γk(dzk)

1∏
i=k

Li−1(zi, dzi−1) . (S30)

224 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

Table 9.4: Results of the different models on MNIST with different annealing schemes.
number of epoches ELBO: 10 30 100 NLL: 10 30 100

VAE 95.26 ± 0.5 91.58 ± 0.27 89.7 ± 0.19 89.83 ± 0.59 86.86 ± 0.26 85.22 ± 0.07
IWAE,
K = 10

91.42 ± 0.21 88.56 ± 0.07 87.17 ± 0.19 88.54 ± 0.27 86.07 ± 0.1 84.82 ± 0.1

IWAE,
K = 50

90.34 ± 0.27 87.5 ± 0.16 86.05 ± 0.11 89.4 ± 0.25 86.54 ± 0.15 85.05 ± 0.1

L-MCVAE
Fixed, K = 5

96.6 ± 3.51 88.8 ± 0.46 87.77 ± 0.12 90.63 ± 2.19 85.85 ± 0.27 85.07 ± 0.04

L-MCVAE
Sigmoidal, K = 5

95.48 ± 2.29 88.87 ± 0.82 87.81 ± 0.53 90.05 ± 1.63 85.92 ± 0.62 85.16 ± 0.38

L-MCVAE
All learnable, K = 5

96.62 ± 3.24 88.58 ± 0.75 87.51 ± 0.41 90.59 ± 2.01 85.68 ± 0.49 84.92 ± 0.24

L-MCVAE
Fixed, K = 10

95.98 ± 3.91 88.36 ± 0.7 87.38 ± 0.35 90.5 ± 2.23 85.75 ± 0.33 85.0 ± 0.11

L-MCVAE
Sigmoidal, K = 10

96.78 ± 0.47 88.35 ± 0.63 87.17 ± 0.52 91.13 ± 0.27 85.72 ± 0.31 84.84 ± 0.26

L-MCVAE
All learnable, K = 10

96.78 ± 1.06 87.99 ± 0.71 86.8 ± 0.66 91.33 ± 0.61 85.47 ± 0.46 84.58 ± 0.39

A-MCVAE
Fixed, K = 3

96.21 ± 3.43 88.64 ± 0.78 87.63 ± 0.42 90.42 ± 2.34 85.77 ± 0.65 85.02 ± 0.37

A-MCVAE
Sigmoidal, K = 3

96.59 ± 2.31 88.96 ± 0.4 87.86 ± 0.06 90.85 ± 1.62 85.97 ± 0.34 85.17 ± 0.1

A-MCVAE
All learnable, K = 3

95.44 ± 2.68 88.79 ± 0.63 87.78 ± 0.37 89.9 ± 1.68 85.96 ± 0.59 85.23 ± 0.41

A-MCVAE
Fixed, K = 5

95.55 ± 2.96 87.99 ± 0.57 87.03 ± 0.27 90.39 ± 2.21 85.6 ± 0.67 84.84 ± 0.38

A-MCVAE
Sigmoidal, K = 5

96.56 ± 2.02 88.51 ± 0.31 87.46 ± 0.48 91.62 ± 1.55 85.96 ± 0.06 85.15 ± 0.21

A-MCVAE
All learnable, K = 5

95.81 ± 1.72 88.11 ± 0.13 87.14 ± 0.18 90.79 ± 1.14 85.71 ± 0.28 84.95 ± 0.04

VAE with RealNVP 95.23 ± 0.33 91.69 ± 0.15 89.62 ± 0.17 89.98 ± 0.24 86.88 ± 0.05 85.23 ± 0.18

9.8. PROOFS 225

Table 9.5: Full results of the different models on CelebA. All scores must be added 11400 in this table.
number of epoches ELBO: 10 30 100 NLL: 10 30 100

VAE 23.78 ± 1.95 17.99 ± 0.4 14.72 ± 0.16 17.35 ± 1.7 12.68 ± 0.62 10.11 ± 0.32
IWAE,
K = 10

20.59 ± 0.71 15.45 ± 0.52 12.2 ± 0.3 18.25 ± 0.6 13.18 ± 0.42 10.14 ± 0.31

IWAE,
K = 50

19.05 ± 0.39 13.59 ± 0.5 10.48 ± 0.89 19.08 ± 0.42 13.17 ± 0.54 10.12 ± 0.86

L-MCVAE
Fixed, K = 5

21.93 ± 1.34 13.12 ± 1.27 12.03 ± 1.21 16.65 ± 1.55 10.12 ± 1.38 9.14 ± 1.27

L-MCVAE
Sigmoidal, K = 5

21.61 ± 1.48 12.72 ± 0.43 11.6 ± 0.37 16.42 ± 1.47 9.62 ± 0.47 8.72 ± 0.4

L-MCVAE
All learnable, K = 5

20.75 ± 0.65 12.99 ± 0.7 11.91 ± 0.61 16.16 ± 0.93 10.01 ± 0.72 9.03 ± 0.64

L-MCVAE
Fixed, K = 10

21.49 ± 0.03 12.83 ± 0.57 11.76 ± 0.56 17.67 ± 0.75 10.26 ± 0.9 9.24 ± 0.79

L-MCVAE
Sigmoidal, K = 10

19.44 ± 0.82 11.81 ± 0.45 10.7 ± 0.4 15.67 ± 1.48 9.24 ± 0.8 8.24 ± 0.73

L-MCVAE
All learnable, K = 10

20.7 ± 1.15 11.81 ± 0.34 10.6 ± 0.23 17.0 ± 1.87 9.29 ± 0.73 8.26 ± 0.52

A-MCVAE
Fixed, K = 3

21.59 ± 1.5 13.94 ± 0.42 12.84 ± 0.3 16.64 ± 1.37 10.98 ± 0.48 9.95 ± 0.3

A-MCVAE
Sigmoidal, K = 3

23.63 ± 1.19 14.17 ± 0.26 12.96 ± 0.18 18.0 ± 0.54 11.09 ± 0.2 10.11 ± 0.13

A-MCVAE
All learnable, K = 3

22.11 ± 1.66 14.62 ± 0.35 13.54 ± 0.18 17.38 ± 1.54 11.68 ± 0.33 10.67 ± 0.16

A-MCVAE
Fixed, K = 5

20.13 ± 1.11 13.11 ± 0.38 11.99 ± 0.56 16.71 ± 1.47 10.64 ± 0.24 9.63 ± 0.32

A-MCVAE
Sigmoidal, K = 5

20.95 ± 1.18 12.42 ± 0.42 11.13 ± 0.37 17.42 ± 1.49 9.97 ± 0.59 8.82 ± 0.57

A-MCVAE
All learnable, K = 5

22.17 ± 0.17 12.73 ± 0.09 11.46 ± 0.15 18.97 ± 1.04 10.41 ± 0.28 9.22 ± 0.16

VAE with RealNVP 15.56 ± 0.29 13.60 ± 0.35 12.21 ± 0.27 10.69 ± 0.19 9.09 ± 0.26 8.98 ± 0.2

226 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

Table 9.6: Results of the different models on CIFAR-10 with different annealing schemes. All scores
must be added 2800 in this table.
number of epoches ELBO: 10 30 100 NLL: 10 30 100

VAE 69.57 ± 0.08 69.55 ± 0.51 68.84 ± 0.06 68.51 ± 0.07 68.41 ± 0.33 67.9 ± 0.03
IWAE,
K = 10

69.82 ± 0.03 69.35 ± 0.03 69.36 ± 0.36 68.56 ± 0.03 68.0 ± 0.03 68.02 ± 0.4

IWAE,
K = 50

69.94 ± 0.08 69.55 ± 0.04 69.43 ± 0.03 69.15 ± 0.15 68.37 ± 0.18 67.93 ± 0.02

L-MCVAE
Fixed, K = 5

70.86 ± 0.53 68.44 ± 0.18 68.12 ± 0.11 69.37 ± 0.37 67.78 ± 0.1 67.53 ± 0.07

L-MCVAE
Sigmoidal, K = 5

70.9 ± 0.59 68.46 ± 0.13 68.12 ± 0.11 69.42 ± 0.39 67.77 ± 0.11 67.51 ± 0.08

L-MCVAE
All learnable, K = 5

70.62 ± 0.41 68.55 ± 0.18 68.09 ± 0.1 69.15 ± 0.38 67.73 ± 0.07 67.5 ± 0.07

L-MCVAE
Fixed, K = 10

70.67 ± 0.42 68.37 ± 0.06 69.07 ± 1.49 69.62 ± 0.54 67.78 ± 0.06 67.51 ± 0.03

L-MCVAE
Sigmoidal, K = 10

70.99 ± 0.59 68.36 ± 0.04 68.03 ± 0.0 69.8 ± 0.67 67.76 ± 0.04 67.51 ± 0.03

L-MCVAE
All learnable, K = 10

71.19 ± 0.79 68.36 ± 0.03 68.01 ± 0.04 69.95 ± 0.62 67.78 ± 0.07 67.5 ± 0.05

A-MCVAE
Fixed, K = 3

69.97 ± 0.99 68.48 ± 0.29 68.18 ± 0.16 69.26 ± 0.76 67.77 ± 0.18 67.55 ± 0.1

A-MCVAE
Sigmoidal, K = 3

70.5 ± 1.18 68.45 ± 0.28 68.19 ± 0.18 69.18 ± 0.8 67.77 ± 0.19 67.56 ± 0.11

A-MCVAE
All learnable, K = 3

70.69 ± 1.23 68.44 ± 0.3 68.17 ± 0.18 69.36 ± 0.89 67.76 ± 0.2 67.55 ± 0.11

A-MCVAE
Fixed, K = 5

70.37 ± 1.04 68.31 ± 0.21 68.04 ± 0.1 69.36 ± 0.87 67.73 ± 0.17 67.51 ± 0.08

A-MCVAE
Sigmoidal, K = 5

70.89 ± 0.38 68.4 ± 0.05 68.07 ± 0.04 69.71 ± 0.33 67.8 ± 0.04 67.53 ± 0.02

A-MCVAE
All learnable, K = 5

70.1 ± 0.89 68.28 ± 0.2 68.01 ± 0.08 69.23 ± 0.75 67.71 ± 0.15 67.5 ± 0.07

VAE with RealNVP 70.01 ± 0.12 69.51 ± 0.07 69.19 ± 0.13 68.73 ± 0.05 68.35 ± 0.05 68.05 ± 0.02

9.8. PROOFS 227

Eq. (S30) is satisfied for k = 1 by (S28). Assume that (S30) is satisfied for k 6 K − 1. By (S28),

Γk+1(dzk+1)
1∏

i=k+1

Li−1(zi, dzi−1) = Γk+1(dzk+1)Lk(zk+1, dzk)
1∏
i=k

Li−1(zi,dzi−1)

= Γk(dzk)Mk+1(zk,dzk+1)wk+1(zk, zk+1)
1∏
i=k

Li−1(zi, dzi−1)

= Mk+1(zk,dzk+1)wk+1(zk, zk+1)Γ0(dz0)
k∏
i=1

Mi(zi−1,dzi)
k∏
i=1

wi(zi−1, zi)

which concludes the proof.

We now highlight conditions under which (S28) is satisfied.

1. Assume that {Γk}Kk=0 have positive densities w.r.t. to the Lebesgue measure, i.e. Γk(dzk) =
Γk(zk)dzk and that the kernels {Mk}Kk=1 and {Lk}K−1

k=0 have positive transition densitiesMk(zk−1, dzk) =
mk(zk−1, zk)dzk and Lk−1(zk,dzk−1) = `k−1(zk, zk−1)dzk−1, k ∈ {1, . . . ,K}. Then,

wk(zk−1, zk) =
γk(zk)`k−1(zk, zk−1)

γk−1(zk−1)mk(zk−1, zk)

2. Assume that for k ∈ {1, . . . ,K}, Γk(dzk−1)Mk(zk−1,dzk) = Γk(dzk)Lk−1(zk,dzk−1), and that
there exists a positive measurable function such that Γk(dzk−1) = w̃k(zk−1)Γk−1(dzk−1). Then,

Γk(dzk)Lk−1(zk,dzk−1) = Γk(dzk−1)Mk(zk−1,dzk) = w̃k(zk−1)Γk−1(dzk−1)Mk(zk−1,dzk) .

Hence, (S28) is satisfied with wk(zk−1, zk) = w̃k(zk−1). In particular, if for all k ∈ {0, . . . ,K},
Γk(zk) = γk(zk)dzk, where γk is a positive p.d.f., then w̃k(zk) = γk(zk)/γk−1(zk−1).

3. Assume that for k ∈ {1, . . . ,K}, Mk is reversible w.r.t. Γk, i.e. Γk(dzk−1)Mk(zk−1,dzk) =
Γk(dzk)Mk(zk, dzk−1), and that there exists a positive measurable function such that Γk(dzk−1) =
w̃k(zk−1)Γk−1(dzk−1). Then, setting Lk−1 = Mk, (S28) is satisfied.

9.8.2 Proof of (9.14)

For k ∈ {1, . . . ,K}, zk−1 ∈ Rd, denote by Gk,zk−1
the mapping uk 7→ Tuk(zk−1). Our derivation

below rely on the fact that for k ∈ {1, . . . ,K}, zk−1 ∈ Rd, Gk,zk−1
is a C1-diffeomorphism. This is

the case for the Langevin mappings. Note, similarly to the density considered in Section 9.3, that
mk(zk−1, zk) = ϕ(G−1

k,zk−1
(zk))JG−1

k,zk−1

(zk). When K = 1, we have

∫
log
(
w1(z0, z1)

)
q1
φ(z0:1 | x)dz0:1 =

∫
log
(
w1(z0, z1)

)
qφ(z0 | x)JG−1

1,z0

(z1)ϕ
(
G−1

1,z0
(z1)

)
dz0:1

=

∫
log
(
w1(z0,T1,u1(z0))

)
qφ(z0 | x)ϕ(u1)dz0du1 ,

228 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

where we have performed the change of variables u1 = G−1
1,z0

(z1), hence z1 = G1,z0(u1) = T1,u1(z0). Let
now K be in N∗. In general, we write

LSIS =

∫
log

(
K∏
k=1

wk(zk−1, zk)

)
qKφ (z0:K | x)dz0:K

=

∫
log

(
K∏
k=1

wk(zk−1, zk)

)
qφ(z0 | x)

K∏
k=1

mk(zk−1, zk)dz0:K−1dzK

=

∫
log

(
K∏
k=1

wk(zk−1, zk)

)
qφ(z0 | x)

K−1∏
k=1

mk(zk−1, zk)ϕ(G−1
K,zK−1

(zK))JG−1
K,zK−1

(zK)dz0:K−1dzK

=

∫
log

(
K−1∏
k=1

wk(zk−1, zk)wK(zK−1,TuK (zK−1))qφ(z0 | x)

)
K−1∏
k=1

mk(zk−1, zk)ϕ(uK)dz0:K−1duK

using the change of variables uK = G−1
K,zK−1

(zK). By an immediate backwards induction, we write

LSIS =

∫
log

(
K∏
k=1

wk(
k−1
©
i=1

Ti,ui(z0),
k
©
i=1

Ti,ui(z0))

)
qφ(z0 | x)ϕ(u1:K)dz0du1:K .

9.8.3 Proof of Lemma 71

Let η < L−1 and u ∈ RD. First we show that TMALA
u is invertible. Consider, for each (y, u) ∈ R2d, the

mapping Hy,u(z) = y −√2ηu− η∇ log π(z). We have, for z1, z2 ∈ Rd,

‖Hy,u(z1)−Hy,u(z2)‖ 6 η‖∇ log π(z1)−∇ log π(z2)‖ 6 ηL‖z1 − z2‖
and ηL < 1. Hence Hy,u is a contraction mapping and thus has a unique fixed point zy,u. Hence, for all
(y, u) ∈ R2d there exists a unique zy,u satisfying

Hy,u(zy,u) = zy,u ⇒ y = zy,u + η∇ log π(zy,u) +
√

2ηu = TMALA
u (zy,u).

This establishes the invertibility of TMALA
u . The fact that the inverse of TMALA

u is C1 follows from a
simple application of the local inverse function theorem.

9.9 ELBO AIS

9.9.1 Construction of the control variates

We prove in this section that the variance reduced objective we consider is valid. Sample now n samples
u1:n

0:K
i.i.d.∼ ϕd,K+1. For an index i ∈ {1, . . . , n}, given the initial point zi0 = Vφ,x(ui0) and the innovation

noise ui1:K , we sample the A/R booleans ai1:K . We introduce, in the main text, for i ∈ {1, . . . , n}

W̃n,i =
1

n− 1

∑
j 6=i

W (Vφ,x(uj0), aj1:K , u
j
1:K) ,

W̃i provides a reasonable estimate of the AIS ELBO but is independent from the i-th trajectory. We
use this quantity as a control variate to reduce the variance of our gradient estimator by introducing

∇̂LAISn = n−1
n∑
i=1

∇W (Vφ,x(ui0), ai1:K , u
i
1:K)

+ n−1
n∑
i=1

[
W (Vφ,x(ui0), ai1:K , u

i
1:K)− W̃n,i

]
×∇ logA(Vφ,x(ui0), ai1:K , u

i
1:K) . (S31)

9.9. ELBO AIS 229

Proving its unbiasedness boils down to proving that the term n−1
∑n

i=1 W̃n,i∇ logA(Vφ,x(ui0), ai1:K , u
i
1:K)

has expectation zero. Let us compute for i ∈ {1 . . . , n},∫∑
ai1:K

ϕd,K+1(ui0:K)A(Vφ,x(ui0), ai1:K , u
i
1:K)W̃n,i∇ logA(Vφ,x(ui0), ai1:K , u

i
1:K)dui0:K =

∫ ∑
ai1:K−1

ϕd,K+1(ui0:K)

K∏
k=1

α
aik
k,uik

(
zik−1

)
W̃n,i

∇K−1∑
k=1

logα
aik
k,uik

(
zik−1

)
+
∑
aiK

∇ logα
aiK
K,uiK

(
ziK−1

)dui0:K ,

denoting zj0 = Vφ,x(uj0), zjk = ©k
i=1T

aji
i,uji

(zj0) by simplicity of notation. Yet,
∑

aiK
α
aiK
K,uiK

(
ziK−1

)
= 1

exactly, thus
∑

aiK
α
aiK
K,uiK

(
zlK−1

)
∇ logα

aiK
K,uiK

(
ziK−1

)
= 0. We can thus show by an immediate induction

that
∫∑

ai1:K
ϕd(u

i
0:K)W̃n,i∇ logA(Vφ,x(ui0), ai1:K , u

i
1:K)duii:K = 0, as W̃n,i is a constant in that integral

by independence of the samples for i ∈ {1 . . . , n}. Moreover, as

∫∑
a1:n

1:K

n∑
i=1

W̃n,i∇ logA(Vφ,x(ui0), ai1:K , u
i
1:K)

n∏
`=1

ϕd,K+1(u`0:K)du1:n
0:K =

∫ n∑
i=1

∑
a−i1:K

∫ ∑
ai1:K

W̃n,i∇ logA(Vφ,x(ui0), ai1:K , u
i
1:K)ϕd,K+1(ui0:K)dui0:K

∏
`6=i

ϕd,K+1(u`0:K)du−i1:K ,

then n−1
∑n

i=1 W̃n,i∇ logA(Vφ,x(ui0), ai1:K , u
i
1:K) is of zero expectation, and (S31) is an unbiased esti-

mator of the gradient.

9.9.2 Discussion of [WKN20b]

In [WKN20b], authors consider a MCMC VAE inspired by AIS. The model used however is quite
different in spirit to what is performed in this work. [WKN20b] use Langevin mappings and accept
reject steps in their VAE. Note however that the A/R probabilities defined are written as

α(x, y) = 1 ∧ π(y)/π(x) ,

different from (9.21). Moreover, even though accept/reject steps are considered, the score function
estimator (9.25) is not taken into account.

Finally, the initial density of the sequence is not taken to be some variational mean field initialization
but directly the prior in the latent space. As a result, the scores obtained by the MCMC VAE are
less competitive than that of the RNVP VAE presented in [WKN20b], Table 3., contrary to what is
presented here.

230 CHAPTER 9. MONTE CARLO VARIATIONAL AUTO ENCODERS

References

[AB04] Felix V Agakov and David Barber. “An auxiliary variational method”. In: International
Conference on Neural Information Processing. Springer. 2004, pp. 561–566.

[AC75] Samuel M Allen and John W Cahn. “Coherent and incoherent equilibria in iron-rich
iron-aluminum alloys”. In: Acta Metallurgica 23.9 (1975), pp. 1017–1026. issn: 0001-
6160. doi: https://doi.org/10.1016/0001-6160(75)90106-6. url: https://www.
sciencedirect.com/science/article/pii/0001616075901066.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein generative adversarial
networks”. In: International conference on machine learning. PMLR. 2017, pp. 214–223.

[ADH10] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. “Particle Markov chain
Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B 72.3 (2010),
pp. 269–342.

[Aga+17] Sergios Agapiou, Omiros Papaspiliopoulos, Daniel Sanz-Alonso, and AM Stuart. “Impor-
tance sampling: Intrinsic dimension and computational cost”. In: Statistical Science (2017),
pp. 405–431.

[AKS19] MS Albergo, G Kanwar, and PE Shanahan. “Flow-based generative models for Markov
chain Monte Carlo in lattice field theory”. In: Physical Review D 100.3 (2019), p. 034515.

[AKW12] Sungjin Ahn, Anoop Korattikara, and Max Welling. “Bayesian posterior sampling via
stochastic gradient Fisher scoring”. In: arXiv preprint arXiv:1206.6380 (2012).

[AL19a] C. Andrieu and S. Livingstone. “Peskun-Tierney ordering for Markov chain and process
Monte Carlo: beyond the reversible scenario”. In: arXiv preprint arXiv:1906.06197 (2019).

[AL19b] Christophe Andrieu and Samuel Livingstone. “Peskun-Tierney ordering for Markov chain
and process Monte Carlo: beyond the reversible scenario”. In: arXiv preprint arXiv:1906.06197
(2019).

[ALV+18] Christophe Andrieu, Anthony Lee, Matti Vihola, et al. “Uniform ergodicity of the iterated
conditional SMC and geometric ergodicity of particle Gibbs samplers”. In: Bernoulli 24.2
(2018), pp. 842–872.

[AM21] Ömer Deniz Akyildiz and Joaquıén Mıéguez. “Convergence rates for optimised adaptive
importance samplers”. In: Statistics and Computing 31.2 (2021), pp. 1–17.

[And+18] Christophe Andrieu, Arnaud Doucet, Sinan Yıldırım, and Nicolas Chopin. “On the
utility of Metropolis-Hastings with asymmetric acceptance ratio”. In: arXiv preprint
arXiv:1803.09527 (2018).

[Ard+19] Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Guided
Image Generation with Conditional Invertible Neural Networks. 2019. arXiv: 1907.02392
[cs.CV].

[ASW14] Sungjin Ahn, Babak Shahbaba, and Max Welling. “Distributed stochastic gradient MCMC”.
In: International conference on machine learning. PMLR. 2014, pp. 1044–1052.

[AT08] Christophe Andrieu and Johannes Thoms. “A tutorial on adaptive MCMC”. In: Statistics
and computing 18.4 (2008), pp. 343–373.

231

https://doi.org/https://doi.org/10.1016/0001-6160(75)90106-6
https://www.sciencedirect.com/science/article/pii/0001616075901066
https://www.sciencedirect.com/science/article/pii/0001616075901066
https://arxiv.org/abs/1907.02392
https://arxiv.org/abs/1907.02392

232 REFERENCES

[Aza+18] Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian Goodfellow, and Augustus Odena.
“Discriminator Rejection Sampling”. In: International Conference on Learning Representa-
tions. 2018.

[Aza+19] Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian Goodfellow, and Augustus Odena.
“Discriminator Rejection Sampling”. In: arXiv:1810.06758 (2019). eprint: 1810.06758
(stat.ML).

[BDH17] Rémi Bardenet, Arnaud Doucet, and Christopher C Holmes. “On Markov chain Monte
Carlo methods for tall data”. In: Journal of Machine Learning Research 18.47 (2017).

[BDM12] Mylène Bédard, Randal Douc, and Eric Moulines. “Scaling analysis of multiple-try MCMC
methods”. In: Stochastic Processes and their Applications 122.3 (2012), pp. 758–786.

[BDM18] Nicolas Brosse, Alain Durmus, and Eric Moulines. “The promises and pitfalls of stochastic
gradient Langevin dynamics”. In: Advances in Neural Information Processing Systems 31
(2018).

[Bes+13] Alexandros Beskos, Natesh Pillai, Gareth Roberts, Jesus-Maria Sanz-Serna, and Andrew
Stuart. “Optimal tuning of the hybrid Monte Carlo algorithm”. In: Bernoulli 19.5A (2013),
pp. 1501–1534.

[Bes94a] J.E. Besag. “Comments on “Representations of knowledge in complex systems” by U. Grenan-
der and M. Miller”. In: J. Roy. Statist. Soc. Ser. B 56 (1994), pp. 591–592.

[Bes94b] J.E. Besag. “Comments on “Representations of knowledge in complex systems” by U. Grenan-
der and M. Miller”. In: J. Roy. Statist. Soc. Ser. B 56 (1994), pp. 591–592.

[BGS15] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. “Importance weighted autoencoders”.
In: arXiv preprint arXiv:1509.00519 (2015).

[Bin+18] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman.
Pyro: Deep Universal Probabilistic Programming. 2018. arXiv: 1810.09538 [cs.LG].

[Bin+19] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, The-
ofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. “Pyro:
Deep universal probabilistic programming”. In: Journal of Machine Learning Research 20.1
(2019), pp. 973–978.

[BJ18] N. Bou-Rabee and S.-S. Jesús Marıéa. “Geometric Integrators and the Hamiltonian Monte
Carlo method”. In: Acta Numerica (2018), pp. 1–92.

[Bon+11] Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. “Dis-
placement interpolation using Lagrangian mass transport”. In: Proceedings of the 2011
SIGGRAPH Asia Conference. 2011, pp. 1–12.

[BR17] Joris Bierkens and Gareth Roberts. “A piecewise deterministic scaling limit of lifted
Metropolis–Hastings in the Curie–Weiss model”. In: Ann. Appl. Probab. 27.2 (Apr. 2017),
pp. 846–882. doi: 10.1214/16-AAP1217. url: https://doi.org/10.1214/16-AAP1217.

[Bro+11] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov
chain Monte Carlo. CRC press, 2011.

[BZM20] Ricardo Baptista, Olivier Zahm, and Youssef Marzouk. “An adaptive transport framework
for joint and conditional density estimation”. In: arXiv preprint arXiv:2009.10303 (2020).

[CDO+11] Su Chen, Josef Dick, Art B Owen, et al. “Consistency of Markov chain quasi-Monte Carlo
on continuous state spaces”. In: The Annals of Statistics 39.2 (2011), pp. 673–701.

[CDS18a] Anthony L Caterini, Arnaud Doucet, and Dino Sejdinovic. “Hamiltonian variational auto-
encoder”. In: Advances in Neural Information Processing Systems. 2018, pp. 8167–8177.

1810.06758
https://arxiv.org/abs/1810.09538
https://doi.org/10.1214/16-AAP1217
https://doi.org/10.1214/16-AAP1217

REFERENCES 233

[CDS18b] Anthony L Caterini, Arnaud Doucet, and Dino Sejdinovic. “Hamiltonian variational auto-
encoder”. In: Advances in Neural Information Processing Systems. 2018, pp. 8167–8177.

[CFG14] Tianqi Chen, Emily Fox, and Carlos Guestrin. “Stochastic gradient Hamiltonian Monte
Carlo”. In: International conference on machine learning. PMLR. 2014, pp. 1683–1691.

[Cha+18] Niladri Chatterji, Nicolas Flammarion, Yian Ma, Peter Bartlett, and Michael Jordan. “On
the theory of variance reduction for stochastic gradient Monte Carlo”. In: International
Conference on Machine Learning. PMLR. 2018, pp. 764–773.

[Che+20a] Tong Che, Ruixiang ZHANG, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan
Cao, and Yoshua Bengio. “Your GAN is Secretly an Energy-based Model and You Should
Use Discriminator Driven Latent Sampling”. In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 12275–12287. url: https://proceedings.neurips.
cc/paper/2020/file/90525e70b7842930586545c6f1c9310c-Paper.pdf.

[Che+20b] Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan
Cao, and Yoshua Bengio. “Your GAN is Secretly an Energy-based Model and You Should
use Discriminator Driven Latent Sampling”. In: arXiv preprint arXiv:2003.06060 (2020).

[CJ21] Adam D Cobb and Brian Jalaian. “Scaling Hamiltonian Monte Carlo inference for Bayesian
neural networks with symmetric splitting”. In: Uncertainty in Artificial Intelligence. PMLR.
2021, pp. 675–685.

[CL07a] Radu V Craiu and Christiane Lemieux. “Acceleration of the multiple-try Metropolis
algorithm using antithetic and stratified sampling”. In: Statistics and Computing 17.2
(2007), p. 109.

[CL07b] Radu V. Craiu and Christiane Lemieux. “Acceleration of the Multiple-Try Metropolis
algorithm using antithetic and stratified sampling”. In: Statistics and Computing 17.2
(2007), p. 109. issn: 1573-1375. doi: 10.1007/s11222-006-9009-4. url: https://doi.
org/10.1007/s11222-006-9009-4.

[CLP99] F. Chen, L. Lovász, and I. Pak. “Lifting Markov chains to speed up mixing”. In: Annual ACM
Symposium on Theory of Computing (Atlanta, GA, 1999). ACM, New York, 1999, pp. 275–
281. doi: 10.1145/301250.301315. url: https://doi.org/10.1145/301250.301315.

[CMD17] Chris Cremer, Quaid Morris, and David Duvenaud. “Reinterpreting importance-weighted
autoencoders”. In: arXiv preprint arXiv:1704.02916 (2017).

[Cor+19] Rob Cornish, Anthony L Caterini, George Deligiannidis, and Arnaud Doucet. “Relaxing
bijectivity constraints with continuously indexed normalising flows”. In: arXiv preprint
arXiv:1909.13833 (2019).

[Cor+20] Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet. “Relaxing
bijectivity constraints with continuously indexed normalising flows”. In: International
conference on machine learning. PMLR. 2020, pp. 2133–2143.

[CR10] N. Chopin and C. P. Robert. “Properties of nested sampling”. In: Biometrika 97.3 (2010),
pp. 741–755.

[Cro98] Gavin E Crooks. “Nonequilibrium measurements of free energy differences for microscop-
ically reversible Markovian systems”. In: Journal of Statistical Physics 90.5-6 (1998),
pp. 1481–1487.

[CS97] Ming-Hui Chen and Qi-Man Shao. “On Monte Carlo Methods for Estimating Ratios of
Normalizing Constants”. In: Annals of Statistics 25 (Aug. 1997). doi: 10.1214/aos/
1031594732.

[CTA19] Nicola De Cao, Ivan Titov, and Wilker Aziz. “Block Neural Autoregressive Flow”. In: UAI.
2019.

https://proceedings.neurips.cc/paper/2020/file/90525e70b7842930586545c6f1c9310c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/90525e70b7842930586545c6f1c9310c-Paper.pdf
https://doi.org/10.1007/s11222-006-9009-4
https://doi.org/10.1007/s11222-006-9009-4
https://doi.org/10.1007/s11222-006-9009-4
https://doi.org/10.1145/301250.301315
https://doi.org/10.1145/301250.301315
https://doi.org/10.1214/aos/1031594732
https://doi.org/10.1214/aos/1031594732

234 REFERENCES

[Dal17] Arnak S. Dalalyan. “Theoretical guarantees for approximate sampling from smooth and
log-concave densities”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 79.3 (2017), pp. 651–676. doi: 10.1111/rssb.12183. eprint: https://
rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssb.12183. url: https://rss.
onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12183.

[Dax+20] Erik Daxberger, Eric Nalisnick, James Allingham, Javier Antorán, and José Miguel
Hernández-Lobato. “Expressive yet tractable Bayesian deep learning via subnetwork
inference”. In: (2020).

[DB+16] Kushal Kr Dey, Sourabh Bhattacharya, et al. “On geometric ergodicity of additive and
multiplicative transformation-based Markov Chain Monte Carlo in high dimensions”. In:
Brazilian Journal of Probability and Statistics 30.4 (2016), pp. 570–613.

[DB14] Somak Dutta and Sourabh Bhattacharya. “Markov chain Monte Carlo based on deter-
ministic transformations”. In: Statistical Methodology 16 (Jan. 2014), pp. 100–116. issn:
1572-3127. doi: 10.1016/j.stamet.2013.08.006.

[DDJ06a] P. Del Moral, A. Doucet, and A. Jasra. “Sequential Monte Carlo samplers”. In: Journal of
the Royal Statistical Society: Series B 68.3 (2006), pp. 411–436.

[DDJ06b] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. “Sequential Monte Carlo samplers”. In:
Journal of the Royal Statistical Society: Series B 68.3 (2006), pp. 411–436.

[DF19] Xinqiang Ding and David J Freedman. “Learning Deep Generative Models with Annealed
Importance Sampling”. In: arXiv preprint arXiv:1906.04904 (2019).

[DHN00] Persi Diaconis, Susan Holmes, and Radford M. Neal. “Analysis of a nonreversible Markov
chain sampler”. In: Ann. Appl. Probab. 10.3 (2000), pp. 726–752. issn: 1050-5164. doi:
10.1214/aoap/1019487508. url: https://doi.org/10.1214/aoap/1019487508.

[Din+14] Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and Hartmut
Neven. “Bayesian sampling using stochastic gradient thermostats”. In: Advances in neural
information processing systems 27 (2014).

[DK16] Samuel Dodge and Lina Karam. “Understanding how image quality affects deep neural
networks”. In: 2016 eighth international conference on quality of multimedia experience
(QoMEX). IEEE. 2016, pp. 1–6.

[DK19] Arnak S Dalalyan and Avetik Karagulyan. “User-friendly guarantees for the Langevin
Monte Carlo with inaccurate gradient”. In: Stochastic Processes and their Applications
129.12 (2019), pp. 5278–5311.

[DM17] Alain Durmus and Eric Moulines. “Nonasymptotic convergence analysis for the unadjusted
Langevin algorithm”. In: The Annals of Applied Probability 27.3 (2017), pp. 1551–1587.

[DMS17] Alain Durmus, Eric Moulines, and Eero Saksman. “On the convergence of Hamiltonian
Monte Carlo”. In: Accepted for publication in Ann. Statist. (2017).

[Dou+11] Randal Douc, Aurélien Garivier, Eric Moulines, Jimmy Olsson, et al. “Sequential Monte
Carlo smoothing for general state space hidden Markov models”. In: Annals of Applied
Probability 21.6 (2011), pp. 2109–2145.

[Dou+15] Arnaud Doucet, Michael K Pitt, George Deligiannidis, and Robert Kohn. “Efficient
implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator”.
In: Biometrika 102.2 (2015), pp. 295–313.

[Dou+18] R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov chains. Springer Series in
Operations Research and Financial Engineering. Springer, Cham, 2018, pp. xviii+757.
isbn: 978-3-319-97703-4; 978-3-319-97704-1. doi: 10.1007/978-3-319-97704-1. url:
https://doi.org/10.1007/978-3-319-97704-1.

https://doi.org/10.1111/rssb.12183
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssb.12183
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssb.12183
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12183
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12183
https://doi.org/10.1016/j.stamet.2013.08.006
https://doi.org/10.1214/aoap/1019487508
https://doi.org/10.1214/aoap/1019487508
https://doi.org/10.1007/978-3-319-97704-1
https://doi.org/10.1007/978-3-319-97704-1

REFERENCES 235

[DS18] Justin Domke and Daniel R Sheldon. “Importance weighting and variational inference”. In:
Advances in neural information processing systems. 2018, pp. 4470–4479.

[DSB16] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using Real
NVP”. In: arXiv preprint arXiv:1605.08803 (2016).

[DSB17] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real
NVP. 2017. arXiv: 1605.08803 [cs.LG].

[Dua+87] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. “Hybrid Monte
Carlo”. In: Physics Letters B 195.2 (1987), pp. 216–222. issn: 0370-2693. doi: https:
//doi.org/10.1016/0370-2693(87)91197-X. url: http://www.sciencedirect.com/
science/article/pii/037026938791197X.

[Dus+20] Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine
Heller, Balaji Lakshminarayanan, and Dustin Tran. “Efficient and scalable Bayesian neural
nets with rank-1 factors”. In: International conference on machine learning. PMLR. 2020,
pp. 2782–2792.

[EM12] Tarek A El Moselhy and Youssef M Marzouk. “Bayesian inference with optimal maps”. In:
Journal of Computational Physics 231.23 (2012), pp. 7815–7850.

[Fal19] WA Falcon. “PyTorch Lightning”. In:GitHub. Note: https://github.com/PyTorchLightning/pytorch-
lightning 3 (2019).

[Foo+19] Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner.
“’In-Between’Uncertainty in Bayesian Neural Networks”. In: arXiv preprint arXiv:1906.11537
(2019).

[Foo+20] Andrew Foong, David Burt, Yingzhen Li, and Richard Turner. “On the expressiveness of
approximate inference in Bayesian neural networks”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 15897–15908.

[Fra+20] Guilherme Franca, Jeremias Sulam, Daniel P Robinson, and René Vidal. “Conformal
symplectic and relativistic optimization”. In: Journal of Statistical Mechanics: Theory and
Experiment 2020.12 (2020), p. 124008.

[FSG20] Sebastian Farquhar, Lewis Smith, and Yarin Gal. “Liberty or depth: Deep Bayesian
neural nets do not need complex weight posterior approximations”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 4346–4357.

[FSS14] Youhan Fang, Jesus-Maria Sanz-Serna, and Robert D Skeel. “Compressible generalized
hybrid Monte Carlo”. In: The Journal of chemical physics 140.17 (2014), p. 174108.

[FW12] Nial Friel and Jason Wyse. “Estimating the evidence–a review”. In: Statistica Neerlandica
66.3 (2012), pp. 288–308.

[Gal16] Yarin Gal. “Uncertainty in Deep Learning”. In: 2016.

[Gaw+21] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias
Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al.
“A survey of uncertainty in deep neural networks”. In: arXiv preprint arXiv:2107.03342
(2021).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[GC11] Mark Girolami and Ben Calderhead. “Riemann manifold Langevin and Hamiltonian
Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 73.2 (2011), pp. 123–214.

[GF21] Adrià Garriga-Alonso and Vincent Fortuin. “Exact Langevin dynamics with stochastic
gradients”. In: arXiv preprint arXiv:2102.01691 (2021).

https://arxiv.org/abs/1605.08803
https://doi.org/https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/https://doi.org/10.1016/0370-2693(87)91197-X
http://www.sciencedirect.com/science/article/pii/037026938791197X
http://www.sciencedirect.com/science/article/pii/037026938791197X

236 REFERENCES

[GG16] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning”. In: international conference on machine learning.
PMLR. 2016, pp. 1050–1059.

[GGA15] Roger B Grosse, Zoubin Ghahramani, and Ryan P Adams. “Sandwiching the marginal
likelihood using bidirectional Monte Carlo”. In: arXiv preprint arXiv:1511.02543 (2015).

[GGR97] Andrew Gelman, Walter R Gilks, and Gareth O Roberts. “Weak convergence and optimal
scaling of random walk Metropolis algorithms”. In: The annals of applied probability 7.1
(1997), pp. 110–120.

[GHK17] Yarin Gal, Jiri Hron, and Alex Kendall. “Concrete dropout”. In: Advances in neural
information processing systems 30 (2017).

[GM98] Andrew Gelman and Xiao-Li Meng. “Simulating normalizing constants: From importance
sampling to bridge sampling to path sampling”. In: Statistical science (1998), pp. 163–185.

[Goo+14a] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets”. In: Advances in
neural information processing systems 27 (2014).

[Goo+14b] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets”. In:
Proceedings of the 27th International Conference on Neural Information Processing Systems
- Volume 2. NIPS’14. Montreal, Canada: MIT Press, 2014, pp. 2672–2680.

[Goy+17] Anirudh Goyal Alias Parth Goyal, Nan Rosemary Ke, Surya Ganguli, and Yoshua Bengio.
“Variational walkback: Learning a transition operator as a stochastic recurrent net”. In:
Advances in Neural Information Processing Systems. 2017, pp. 4392–4402.

[Gra11] Alex Graves. “Practical variational inference for neural networks”. In: Advances in neural
information processing systems 24 (2011).

[GRV21] Marylou Gabrié, Grant M. Rotskoff, and Eric Vanden-Eijnden. “Adaptive Monte Carlo
augmented with normalizing flows”. In: arXiv preprint arXiv:2105.12603 (2021).

[Gus98] Paul Gustafson. “A guided walk Metropolis algorithm”. In: Statistics and computing 8.4
(1998), pp. 357–364.

[HA15] José Miguel Hernández-Lobato and Ryan Adams. “Probabilistic backpropagation for
scalable learning of Bayesian neural networks”. In: International conference on machine
learning. PMLR. 2015, pp. 1861–1869.

[HAB19] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. “Why relu networks yield
high-confidence predictions far away from the training data and how to mitigate the
problem”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 41–50.

[Har82] P. Hartman. Ordinary Differential Equations: Second Edition. Classics in Applied Mathe-
matics. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor
6, Philadelphia, PA 19104), 1982. isbn: 9780898719222. url: https://books.google.fr/
books?id=NEkkJ93O9okC.

[Hen+20] Jeremy Heng, Adrian N Bishop, George Deligiannidis, and Arnaud Doucet. “Controlled
sequential Monte Carlo”. In: The Annals of Statistics 48.5 (2020), pp. 2904–2929.

[Heu+17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. “GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium”. In: Advances in Neural Information Processing Systems. Ed. by I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.
Vol. 30. Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/paper/
2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf.

https://books.google.fr/books?id=NEkkJ93O9okC
https://books.google.fr/books?id=NEkkJ93O9okC
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf

REFERENCES 237

[HG+14a] Matthew D Hoffman, Andrew Gelman, et al. “The No-U-Turn sampler: adaptively setting
path lengths in Hamiltonian Monte Carlo.” In: J. Mach. Learn. Res. 15.1 (2014), pp. 1593–
1623.

[HG+14b] Matthew D Hoffman, Andrew Gelman, et al. “The No-U-Turn sampler: adaptively setting
path lengths in Hamiltonian Monte Carlo.” In: J. Mach. Learn. Res. 15.1 (2014), pp. 1593–
1623.

[HH80] P. Hall and C. Heyde. Martingale Limit Theory and Its Application. Academic Press, 1980.

[HHS21] Paul Hagemann, Johannes Hertrich, and Gabriele Steidl. “Stochastic normalizing flows
for inverse problems: a Markov Chains viewpoint”. In: arXiv preprint arXiv:2109.11375
(2021).

[HM20] Matthew Hoffman and Yian Ma. “Black-box variational inference as a parametric approxi-
mation to Langevin dynamics”. In: International Conference on Machine Learning. PMLR.
2020, pp. 4324–4341.

[Ho+19] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. “Flow++: Im-
proving flow-based generative models with variational dequantization and architecture
design”. In: arXiv preprint arXiv:1902.00275 (2019).

[Hod+20] Liam Hodgkinson, Chris van der Heide, Fred Roosta, and Michael W Mahoney. “Stochastic
normalizing flows”. In: arXiv preprint arXiv:2002.09547 (2020).

[Hof+19] Matthew Hoffman, Pavel Sountsov, Joshua V Dillon, Ian Langmore, Dustin Tran, and
Srinivas Vasudevan. “NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using
Neural Transport”. In: arXiv preprint arXiv:1903.03704 (2019).

[Hof17] Matthew D. Hoffman. “Learning Deep Latent Gaussian Models with Markov Chain Monte
Carlo”. In: Proceedings of the 34th International Conference on Machine Learning. Ed. by
Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research.
International Convention Centre, Sydney, Australia: PMLR, June 2017, pp. 1510–1519.

[Hor91] Alan M Horowitz. “A generalized guided Monte Carlo algorithm”. In: Physics Letters B
268.2 (1991), pp. 247–252.

[HS13] K Hukushima and Y Sakai. “An irreversible Markov-chain Monte Carlo method with skew
detailed balance conditions”. In: Journal of Physics: Conference Series. Vol. 473. 1. IOP
Publishing. 2013, p. 012012.

[HST99] Heikki Haario, Eero Saksman, and Johanna Tamminen. “Adaptive proposal distribution
for random walk Metropolis algorithm”. English. In: Computational Statistics 14.3 (1999),
pp. 375–395. issn: 0943-4062.

[Hua+18a] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. “Neural au-
toregressive flows”. In: arXiv preprint arXiv:1804.00779 (2018).

[Hua+18b] Chin-Wei Huang, Shawn Tan, Alexandre Lacoste, and Aaron C Courville. “Improving
Explorability in Variational Inference with Annealed Variational Objectives”. In: Advances
in Neural Information Processing Systems. 2018, pp. 9701–9711.

[Izm+18a] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. “Averaging weights leads to wider optima and better generalization”. In: 34th
Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018. Association For
Uncertainty in Artificial Intelligence (AUAI). 2018, pp. 876–885.

[Izm+18b] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. “Averaging weights leads to wider optima and better generalization”. In: arXiv
preprint arXiv:1803.05407 (2018).

238 REFERENCES

[Izm+20] Pavel Izmailov, Wesley J Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and
Andrew Gordon Wilson. “Subspace inference for Bayesian deep learning”. In: Uncertainty
in Artificial Intelligence. PMLR. 2020, pp. 1169–1179.

[Izm+21] Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson.
“What are Bayesian neural network posteriors really like?” In: International Conference on
Machine Learning. PMLR. 2021, pp. 4629–4640.

[JS20] He Jia and Uros Seljak. “Normalizing constant estimation with Gaussianized bridge
sampling”. In: Symposium on Advances in Approximate Bayesian Inference. PMLR. 2020,
pp. 1–14.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[KG17] Alex Kendall and Yarin Gal. “What uncertainties do we need in Bayesian deep learning
for computer vision?” In: Advances in neural information processing systems 30 (2017).

[Kha+18] Mohammad Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash
Srivastava. “Fast and scalable Bayesian deep learning by weight-perturbation in adam”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 2611–2620.

[Kin+16a] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. “Improving variational inference with inverse autoregressive flow”. In: arXiv
preprint arXiv:1606.04934 (2016).

[Kin+16b] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. “Improved variational inference with inverse autoregressive flow”. In: Advances in
neural information processing systems. 2016, pp. 4743–4751.

[Kis65] Leslie Kish. Survey sampling. English. Chichester : Wiley New York, 1965, xvi, 643 p. :
isbn: 0471109495.

[Kol+19] Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and K Gustavo. “General-
ized Sliced Wasserstein Distances”. In: NeurIPS 2019. 2019.

[KP18] Andreas Kamilaris and Francesc X Prenafeta-Boldú. “Deep learning in agriculture: A
survey”. In: Computers and electronics in agriculture 147 (2018), pp. 70–90.

[KPB19] Ivan Kobyzev, Simon Prince, and Marcus A Brubaker. “Normalizing flows: Introduction
and ideas”. In: arXiv preprint arXiv:1908.09257 (2019).

[KPB20] Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. “Normalizing flows: An intro-
duction and review of current methods”. In: IEEE transactions on pattern analysis and
machine intelligence 43.11 (2020), pp. 3964–3979.

[KW13a] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[KW13b] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[KW14] Diederik Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: International
Conference on Learning Representations. 2014.

[KW19] Diederik P Kingma and Max Welling. “An introduction to variational autoencoders”. In:
arXiv preprint arXiv:1906.02691 (2019).

[Lag+21] Evgeny Lagutin, Daniil Selikhanovych, Achille Thin, Sergey Samsonov, Alexey Naumov,
Denis Belomestny, Maxim Panov, and Eric Moulines. “Ex²MCMC: Sampling through
Exploration Exploitation”. In: arXiv preprint arXiv:2111.02702 (2021).

[Law+19] Dieterich Lawson, George Tucker, Bo Dai, and Rajesh Ranganath. “Energy-inspired models:
Learning with sampler-induced distributions”. In: arXiv preprint arXiv:1910.14265 (2019).

REFERENCES 239

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553
(2015), pp. 436–444.

[LDM15] Fredrik Lindsten, Randal Douc, and Éric Moulines. “Uniform ergodicity of the particle
Gibbs sampler”. In: Scandinavian Journal of Statistics 42.3 (2015), pp. 775–797.

[Lee+10] Anthony Lee, Christopher Yau, Michael B Giles, Arnaud Doucet, and Christopher C
Holmes. “On the utility of graphics cards to perform massively parallel simulation of
advanced Monte Carlo methods”. In: Journal of computational and graphical statistics 19.4
(2010), pp. 769–789.

[Lee11] Anthony Lee. “On auxiliary variables and many-core architectures in computational
statistics”. PhD thesis. University of Oxford, 2011.

[LFR19] Samuel Livingstone, Michael F Faulkner, and Gareth O Roberts. “Kinetic energy choice in
Hamiltonian/hybrid Monte Carlo”. In: Biometrika 106.2 (2019), pp. 303–319.

[LHS17a] Daniel Levy, Matthew D Hoffman, and Jascha Sohl-Dickstein. “Generalizing Hamiltonian
Monte Carlo with neural networks”. In: arXiv preprint arXiv:1711.09268 (2017).

[LHS17b] Daniel Levy, Matthew D Hoffman, and Jascha Sohl-Dickstein. “Generalizing Hamiltonian
Monte Carlo with neural networks”. In: arXiv preprint arXiv:1711.09268 (2017).

[LHS18] Daniel Levy, Matthew D. Hoffman, and Jascha Sohl-Dickstein. “Generalizing Hamil-
tonian Monte Carlo with Neural Networks”. In: International Conference on Learning
Representations. 2018.

[Li+16] Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. “Preconditioned
stochastic gradient Langevin dynamics for deep neural networks”. In: Thirtieth AAAI
Conference on Artificial Intelligence. 2016.

[Liu+18] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Large-scale celebfaces attributes
(celeba) dataset”. In: Retrieved August 15.2018 (2018), p. 11.

[LLC11] Faming Liang, Chuanhai Liu, and Raymond Carroll. Advanced Markov chain Monte Carlo
methods: learning from past samples. Vol. 714. John Wiley & Sons, 2011.

[LLW00] Jun S Liu, Faming Liang, and Wing Hung Wong. “The multiple-try method and local
optimization in Metropolis sampling”. In: Journal of the American Statistical Association
95.449 (2000), pp. 121–134.

[LM00] B. Laurent and P. Massart. “Adaptive estimation of a quadratic functional by model selec-
tion”. In: Ann. Statist. 28.5 (Oct. 2000), pp. 1302–1338. doi: 10.1214/aos/1015957395.
url: https://doi.org/10.1214/aos/1015957395.

[LS13] Fredrik Lindsten and Thomas B Schön. “Backward simulation methods for Monte Carlo
statistical inference”. In: Foundations and Trends® in Machine Learning 6.1 (2013),
pp. 1–143.

[Lu+17] Xiaoyu Lu, Valerio Perrone, Leonard Hasenclever, Yee Whye Teh, and Sebastian Vollmer.
“Relativistic Monte Carlo”. In: Artificial Intelligence and Statistics. PMLR. 2017, pp. 1236–
1245.

[LW17] Christos Louizos and Max Welling. “Multiplicative normalizing flows for variational
Bayesian neural networks”. In: International Conference on Machine Learning. PMLR.
2017, pp. 2218–2227.

[Ma+16] Yi-An Ma, Tianqi Chen, Lei Wu, and Emily B Fox. “A unifying framework for devising
efficient and irreversible MCMC samplers”. In: arXiv preprint arXiv:1608.05973 (2016).

[Maa+16] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. “Auxiliary
deep generative models”. In: International conference on machine learning. PMLR. 2016,
pp. 1445–1453.

https://doi.org/10.1214/aos/1015957395
https://doi.org/10.1214/aos/1015957395

240 REFERENCES

[Mad+17] Chris J Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi,
Andriy Mnih, Arnaud Doucet, and Yee Whye Teh. “Filtering variational objectives”. In:
Proceedings of the 31st International Conference on Neural Information Processing Systems.
2017, pp. 6576–6586.

[Mad+18] Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud
Doucet. “Hamiltonian descent methods”. In: arXiv preprint arXiv:1809.05042 (2018).

[Mad+19] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon
Wilson. “A simple baseline for Bayesian uncertainty in deep learning”. In: Advances in
Neural Information Processing Systems 32 (2019).

[McA+17] Rowan McAllister, Yarin Gal, Alex Kendall, Mark Van Der Wilk, Amar Shah, Roberto
Cipolla, and Adrian Weller. “Concrete problems for autonomous vehicle safety: Advantages
of Bayesian deep learning”. In: International Joint Conferences on Artificial Intelligence,
Inc. IEEE. 2017.

[MCF15] Yi-An Ma, Tianqi Chen, and Emily Fox. “A complete recipe for stochastic gradient MCMC”.
In: Advances in neural information processing systems 28 (2015).

[MFR20] Gael M Martin, David T Frazier, and Christian P Robert. “Computing Bayes: Bayesian
computation from 1763 to the 21st century”. In: arXiv preprint arXiv:2004.06425 (2020).

[MHB17] Stephan Mandt, Matthew D Hoffman, and David M Blei. “Stochastic gradient descent as
approximate Bayesian inference”. In: arXiv preprint arXiv:1704.04289 (2017).

[Mic16] Manon Michel. “Irreversible Markov chains by the factorized Metropolis filter : algorithms
and applications in particle systems and spin models”. 2016PSLEE039. PhD thesis. 2016.
url: http://www.theses.fr/2016PSLEE039/document.

[Miy+18] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. “Spectral Nor-
malization for Generative Adversarial Networks”. In: arXiv:1802.05957 (2018). eprint:
1802.05957 (cs.LG).

[MLY17] Seonwoo Min, Byunghan Lee, and Sungroh Yoon. “Deep learning in bioinformatics”. In:
Briefings in bioinformatics 18.5 (2017), pp. 851–869.

[MMT16] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. “The concrete distribution: A
continuous relaxation of discrete random variables”. In: arXiv preprint arXiv:1611.00712
(2016).

[Mon20] Pierre Monmarché. “High-dimensional MCMC with a standard splitting scheme for the
underdamped Langevin”. In: arXiv preprint arXiv:2007.05455 (2020).

[Mon81] Gaspard Monge. “Mémoire sur la théorie des déblais et des remblais”. In: Histoire de
l’Académie Royale des Sciences de Paris (1781).

[MR16] Andriy Mnih and Danilo Rezende. “Variational inference for Monte Carlo objectives”. In:
International Conference on Machine Learning. PMLR. 2016, pp. 2188–2196.

[MT96] K. Mengersen and R. L. Tweedie. “Rates of Convergence of the Hastings and Metropolis
Algorithms”. In: Ann. Statist. 24 (1996), pp. 101–121.

[Mül+19] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
“Neural importance sampling”. In: ACM Transactions on Graphics 38.145 (2019).

[Nea01a] R. M. Neal. “Annealed importance sampling”. In: Statistics and Computing 11 (2001),
pp. 125–139.

[Nea01b] Radford M Neal. “Annealed importance sampling”. In: Statistics and Computing 11.2
(2001), pp. 125–139.

[Nea03] R. M. Neal. “Slice sampling”. In: Ann. Statist. 31.3 (June 2003), pp. 705–767. doi: 10.
1214/aos/1056562461.

http://www.theses.fr/2016PSLEE039/document
1802.05957
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1214/aos/1056562461

REFERENCES 241

[Nea11] R. M. Neal. “MCMC Using Hamiltonian Dynamics”. In: Handbook of Markov Chain Monte
Carlo (2011), pp. 113–162.

[Nea12] Radford M Neal. Bayesian learning for neural networks. Vol. 118. Springer Science &
Business Media, 2012.

[Nek+20] Kirill Neklyudov, Max Welling, Evgenii Egorov, and Dmitry Vetrov. “Involutive MCMC:
a Unifying Framework”. In: arXiv preprint arXiv:2006.16653 (2020).

[Nij+20] Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. “On the anatomy
of MCMC-based maximum likelihood learning of energy-based models”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 5272–5280.

[NYC15] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 427–436.

[Oor+17] Aaron van den Oord et al. Parallel WaveNet: Fast High-Fidelity Speech Synthesis. 2017.
arXiv: 1711.10433 [cs.LG].

[Ott16] Michela Ottobre. “Markov chain Monte Carlo and irreversibility”. In: Reports on Mathe-
matical Physics 77.3 (2016), pp. 267–292.

[OZ00a] Art Owen and Yi Zhou. “Safe and Effective Importance Sampling”. In: Journal of the
American Statistical Association 95.449 (2000), pp. 135–143.

[OZ00b] Art Owen and Yi Zhou. “Safe and effective importance sampling”. In: Journal of the
American Statistical Association 95.449 (2000), pp. 135–143.

[Pap+19] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. “Normalizing flows for probabilistic modeling and inference”.
In: arXiv preprint arXiv:1912.02762 (2019).

[Pap+21] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. “Normalizing flows for probabilistic modeling and inference”.
In: Journal of Machine Learning Research 22.57 (2021), pp. 1–64.

[Par81] Giorgio Parisi. “Correlation functions and computer simulations”. In: Nuclear Physics B
180.3 (1981), pp. 378–384.

[Pas+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. “Automatic differ-
entiation in PyTorch”. In: (2017).

[Pas+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Pytorch: An imperative
style, high-performance deep learning library”. In: arXiv preprint arXiv:1912.01703 (2019).

[Pes73] Peter H Peskun. “Optimum Monte Carlo sampling using Markov chains”. In: Biometrika
60.3 (1973), pp. 607–612.

[Pra19a] Dennis Prangle. “Distilling importance sampling”. In: arXiv preprint arXiv:1910.03632
(2019).

[Pra19b] Dennis Prangle. “Distilling importance sampling”. In: arXiv preprint arXiv:1910.03632
(2019).

[RC13a] C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science & Business
Media, 2013.

[RC13b] Christian Robert and George Casella. Monte Carlo statistical methods. Springer Science &
Business Media, 2013.

https://arxiv.org/abs/1711.10433

242 REFERENCES

[RM15a] Danilo Rezende and Shakir Mohamed. “Variational Inference with Normalizing Flows”. In:
Proceedings of the 32nd International Conference on Machine Learning. Ed. by Francis
Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France:
PMLR, July 2015, pp. 1530–1538.

[RM15b] Danilo Rezende and Shakir Mohamed. “Variational inference with normalizing flows”. In:
International Conference on Machine Learning. PMLR. 2015, pp. 1530–1538.

[RMC16] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks”. In: arXiv:1511.06434 (2016).
eprint: 1511.06434 (cs.LG).

[RMW14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic backpropaga-
tion and approximate inference in deep generative models”. In: arXiv preprint arXiv:1401.4082
(2014).

[Rob07] C. Robert. The Bayesian choice: from decision-theoretic foundations to computational
implementation. Springer Science & Business Media, 2007.

[RR04] Gareth O Roberts and Jeffrey S Rosenthal. “General state space Markov chains and MCMC
algorithms”. In: Probability surveys 1 (2004), pp. 20–71.

[RR98] Gareth O Roberts and Jeffrey S Rosenthal. “Optimal scaling of discrete approximations
to Langevin diffusions”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 60.1 (1998), pp. 255–268.

[RT19] Francisco Ruiz and Michalis Titsias. “A Contrastive Divergence for Combining Variational
Inference and MCMC”. In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of
Machine Learning Research. Long Beach, California, USA: PMLR, Sept. 2019, pp. 5537–
5545.

[RT96] G. O. Roberts and R. L. Tweedie. “Geometric convergence and central limit theorems
for multidimensional Hastings and Metropolis algorithms”. In: Biometrika 83.1 (Mar.
1996), pp. 95–110. issn: 0006-3444. doi: 10.1093/biomet/83.1.95. eprint: https:
//academic.oup.com/biomet/article-pdf/83/1/95/709644/83-1-95.pdf. url:
https://doi.org/10.1093/biomet/83.1.95.

[RTB16] Rajesh Ranganath, Dustin Tran, and David Blei. “Hierarchical variational models”. In:
International Conference on Machine Learning. PMLR. 2016, pp. 324–333.

[Rub87] Donald B Rubin. “Comment: A noniterative Sampling/Importance Resampling alternative
to the data augmentation algorithm for creating a few imputations when fractions of
missing information are modest: The SIR algorithm”. In: Journal of the American Statistical
Association 82.398 (1987), pp. 542–543.

[Rui+21] Francisco JR Ruiz, Michalis K Titsias, Taylan Cemgil, and Arnaud Doucet. “Unbiased
Gradient Estimation for Variational Auto-Encoders using Coupled Markov Chains”. In:
Uncertainty in Artificial Intelligence. 2021.

[RV19] G.M. Rotskoff and E. Vanden-Eijnden. “Dynamical Computation of the Density of States
and Bayes Factors Using Nonequilibrium Importance Sampling”. In: Physical Review
Letters 122.15 (2019), p. 150602.

[SBH03] Øivind Skare, Erik Bølviken, and Lars Holden. “Improved sampling-importance resampling
and reduced bias importance sampling”. In: Scandinavian Journal of Statistics 30.4 (2003),
pp. 719–737.

[SC18] Tobias Schwedes and Ben Calderhead. “Quasi Markov chain Monte Carlo methods”. In:
arXiv preprint arXiv:1807.00070 (2018).

1511.06434
https://doi.org/10.1093/biomet/83.1.95
https://academic.oup.com/biomet/article-pdf/83/1/95/709644/83-1-95.pdf
https://academic.oup.com/biomet/article-pdf/83/1/95/709644/83-1-95.pdf
https://doi.org/10.1093/biomet/83.1.95

REFERENCES 243

[SFM20] Span Spanbauer, Cameron Freer, and Vikash Mansinghka. “Deep involutive generative
models for neural MCMC”. In: arXiv preprint arXiv:2006.15167 (2020).

[SG92] Adrian FM Smith and Alan E Gelfand. “Bayesian statistics without tears: a sampling–
resampling perspective”. In: The American Statistician 46.2 (1992), pp. 84–88.

[SK21] Yang Song and Diederik P Kingma. “How to train your energy-based models”. In: arXiv
preprint arXiv:2101.03288 (2021).

[Ski04] John Skilling. “Nested sampling”. In: AIP Conference Proceedings. Vol. 735. 1. American
Institute of Physics. 2004, pp. 395–405.

[Ski06] John Skilling. “Nested sampling for general Bayesian computation”. In: Bayesian Analysis
1.4 (2006), pp. 833–859.

[SKW15a] Tim Salimans, Diederik Kingma, and Max Welling. “Markov chain Monte Carlo and
variational inference: Bridging the gap”. In: International Conference on Machine Learning.
2015, pp. 1218–1226.

[SKW15b] Tim Salimans, Diederik Kingma, and Max Welling. “Markov chain Monte Carlo and
variational inference: Bridging the gap”. In: International Conference on Machine Learning.
2015, pp. 1218–1226.

[SM08a] R. Salakhutdinov and I. Murray. “On the quantitative analysis of deep belief networks”. In:
Proceedings of the 25th international conference on Machine Learning. 2008, pp. 872–879.

[SM08b] Ruslan Salakhutdinov and Iain Murray. “On the quantitative analysis of deep belief
networks”. In: Proceedings of the 25th international conference on Machine learning. 2008,
pp. 872–879.

[SMD14] Jascha Sohl-Dickstein, Mayur Mudigonda, and Michael R DeWeese. “Hamiltonian Monte
Carlo without detailed balance”. In: arXiv preprint arXiv:1409.5191 (2014).

[Smi17] Leslie N Smith. “Cyclical learning rates for training neural networks”. In: 2017 IEEE
winter conference on applications of computer vision (WACV). IEEE. 2017, pp. 464–472.

[SN+18] Alexander Y Shestopaloff, Radford M Neal, et al. “Sampling latent states for high-
dimensional non-linear state space models with the embedded HMM method”. In: Bayesian
Analysis 13.3 (2018), pp. 797–822.

[SN18] Alexander Y Shestopaloff and Radford M Neal. “Sampling latent states for high-dimensional
non-linear state space models with the embedded HMM method”. In: Bayesian Analysis
13.3 (2018), pp. 797–822.

[So06] Mike KP So. “Bayesian analysis of nonlinear and non-Gaussian state space models via
multiple-try sampling methods”. In: Statistics and Computing 16.2 (2006), pp. 125–141.

[Sri+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. “Dropout: a simple way to prevent neural networks from overfitting”. In: The journal
of machine learning research 15.1 (2014), pp. 1929–1958.

[ST19] Chris Sherlock and Alexandre H. Thiery. “A Discrete Bouncy Particle Sampler”. In: arXiv
preprint 1707.05200 (2019).

[SZE17] Jiaming Song, Shengjia Zhao, and Stefano Ermon. “A-NICE-MC: Adversarial training for
MCMC”. In: Advances in Neural Information Processing Systems. 2017, pp. 5140–5150.

[Tan19] Akinori Tanaka. “Discriminator optimal transport”. In: Proceedings of the 33rd International
Conference on Neural Information Processing Systems. 2019, pp. 6816–6826.

[TCV11] Konstantin S. Turitsyn, Michael Chertkov, and Marija Vucelja. “Irreversible Monte Carlo
algorithms for efficient sampling”. In: Physica D: Nonlinear Phenomena 240.4 (2011),
pp. 410–414. issn: 0167-2789. doi: https://doi.org/10.1016/j.physd.2010.10.003.
url: http://www.sciencedirect.com/science/article/pii/S0167278910002782.

https://doi.org/https://doi.org/10.1016/j.physd.2010.10.003
http://www.sciencedirect.com/science/article/pii/S0167278910002782

244 REFERENCES

[Thi+20a] Achille Thin, Nikita Kotelevskii, Christophe Andrieu, Alain Durmus, Eric Moulines, and
Maxim Panov. “Nonreversible MCMC from conditional invertible transforms: a complete
recipe with convergence guarantees”. In: arXiv preprint arXiv:2012.15550 (2020).

[Thi+20b] Achille Thin, Nikita Kotelevskii, Jean-Stanislas Denain, Leo Grinsztajn, Alain Durmus,
Maxim Panov, and Eric Moulines. “MetFlow: A New Efficient Method for Bridging the
Gap between Markov Chain Monte Carlo and Variational Inference”. In: arXiv preprint
arXiv:2002.12253 (2020).

[Thi+21a] Achille Thin, Yazid Janati El Idrissi, Sylvain Le Corff, Charles Ollion, Eric Moulines,
Arnaud Doucet, Alain Durmus, and Christian Robert. “NEO: Non Equilibrium Sampling
on the Orbits of a Deterministic Transform”. In: Advances in Neural Information Processing
Systems 34 (2021).

[Thi+21b] Achille Thin, Nikita Kotelevskii, Arnaud Doucet, Alain Durmus, Eric Moulines, and
Maxim Panov. “Monte Carlo variational auto-encoders”. In: International Conference on
Machine Learning. PMLR. 2021, pp. 10247–10257.

[Tie94] Luke Tierney. “Markov Chains for Exploring Posterior Distributions”. In: The Annals of
Statistics 22.4 (1994), pp. 1701–1728.

[Tie98] Luke Tierney. “A note on Metropolis-Hastings kernels for general state spaces”. In: Ann.
Appl. Probab. 8.1 (Feb. 1998), pp. 1–9. doi: 10.1214/aoap/1027961031. url: https:
//doi.org/10.1214/aoap/1027961031.

[Tje04] Hakon Tjelmeland. Using all Metropolis–Hastings proposals to estimate mean values. Tech.
rep. 2004.

[TK10] Surya T Tokdar and Robert E Kass. “Importance sampling: a review”. In: Wiley Interdis-
ciplinary Reviews: Computational Statistics 2.1 (2010), pp. 54–60.

[TT13] Esteban G Tabak and Cristina V Turner. “A family of nonparametric density estimation
algorithms”. In: Communications on Pure and Applied Mathematics 66.2 (2013), pp. 145–
164.

[Tur+19a] Ryan Turner, Jane Hung, Eric Frank, Yunus Saatchi, and Jason Yosinski. “Metropolis–
Hastings generative adversarial networks”. In: International Conference on Machine Learn-
ing. PMLR. 2019, pp. 6345–6353.

[Tur+19b] Ryan Turner, Jane Hung, Eric Frank, Yunus Saatchi, and Jason Yosinski. “Metropolis-
Hastings generative adversarial networks”. In: International Conference on Machine Learn-
ing. PMLR. 2019, pp. 6345–6353.

[TV10] Esteban G Tabak and Eric Vanden-Eijnden. “Density estimation by dual ascent of the
log-likelihood”. In: Communications in Mathematical Sciences 8.1 (2010), pp. 217–233.

[Vou+18] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopa-
padakis. “Deep learning for computer vision: A brief review”. In: Computational intelligence
and neuroscience 2018 (2018).

[VVN03] Jakob Verbeek, Nikos Vlassis, and Jan Nunnink. “A variational EM algorithm for large-
scale mixture modeling”. In: 9th Annual Conference of the Advanced School for Computing
and Imaging (ASCI ’03). Ed. by S. Vassiliades, L.M.J. Florack, J.W.J. Heijnsdijk, and
A. van der Steen. Heijen, Netherlands, June 2003, pp. 136–143.

[Wai19] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
2019. doi: 10.1017/9781108627771.

[Wen+20] Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh Tran, Stephan
Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. “How
good is the bayes posterior in deep neural networks really?” In: arXiv preprint arXiv:2002.02405
(2020).

https://doi.org/10.1214/aoap/1027961031
https://doi.org/10.1214/aoap/1027961031
https://doi.org/10.1214/aoap/1027961031
https://doi.org/10.1017/9781108627771

REFERENCES 245

[WI20] Andrew G Wilson and Pavel Izmailov. “Bayesian deep learning and a probabilistic perspec-
tive of generalization”. In: Advances in neural information processing systems 33 (2020),
pp. 4697–4708.

[Wil92] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine Learning 8.3-4 (1992), pp. 229–256.

[Wir+20] Peter Wirnsberger, Andrew J Ballard, George Papamakarios, Stuart Abercrombie, Sébastien
Racanière, Alexander Pritzel, Danilo Jimenez Rezende, and Charles Blundell. “Targeted
free energy estimation via learned mappings”. In: The Journal of Chemical Physics 153.14
(2020), p. 144112.

[WJ+08] Martin J Wainwright, Michael I Jordan, et al. “Graphical models, exponential families, and
variational inference”. In: Foundations and Trends® in Machine Learning 1.1–2 (2008),
pp. 1–305.

[WKN20a] Hao Wu, Jonas Köhler, and Frank Noe. “Stochastic Normalizing Flows”. In: Advances in
Neural Information Processing Systems. Vol. 33. 2020.

[WKN20b] Hao Wu, Jonas Köhler, and Frank Noé. “Stochastic Normalizing Flows”. In: Advances in
Neural Information Processing Systems (2020).

[WKN20c] Hao Wu, Jonas Köhler, and Frank Noé. “Stochastic normalizing flows”. In: Advances in
Neural Information Processing Systems 33 (2020), pp. 5933–5944.

[WKS16] Christopher Wolf, Maximilian Karl, and Patrick van der Smagt. “Variational inference
with Hamiltonian Monte Carlo”. In: arXiv preprint arXiv:1609.08203 (2016).

[WL19] Antoine Wehenkel and Gilles Louppe. “Unconstrained monotonic neural networks”. In:
Advances in Neural Information Processing Systems. 2019, pp. 1543–1553.

[WT11] MaxWelling and Yee W Teh. “Bayesian learning via stochastic gradient Langevin dynamics”.
In: Proceedings of the 28th international conference on machine learning (ICML-11).
Citeseer. 2011, pp. 681–688.

[Wu+16] Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. “On the quantitative
analysis of decoder-based generative models”. In: arXiv preprint arXiv:1611.04273 (2016).

[Xie+18] Jianwen Xie, Yang Lu, Ruiqi Gao, and Ying Nian Wu. “Cooperative learning of energy-
based model and latent variable model via MCMC teaching”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 32. 1. 2018.

[YSN21] Jiancheng Yang, Rui Shi, and Bingbing Ni. “Medmnist classification decathlon: A lightweight
automl benchmark for medical image analysis”. In: 2021 IEEE 18th International Sympo-
sium on Biomedical Imaging (ISBI). IEEE. 2021, pp. 191–195.

[Zha+19] Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson.
“Cyclical stochastic gradient MCMC for Bayesian deep learning”. In: arXiv preprint
arXiv:1902.03932 (2019).

246 REFERENCES

List of Figures

1.1 Schéma de la différence entre une réseau de neurones classique et un réseau de neurones
bayésien. Source : https://towardsdatascience.com/why-you-should-use-bayesian-neural-network-aaf76732c150 15

1.2 Exemples d’observations des datasets MNIST (à gauche) et Fashion MNIST (à droite). 18
1.3 Schéma de l’inférence variationnelle amortie des Auto Encodeurs Variationnels, [KW19]. 20
1.4 Effet de la non réversibilité sur un algorithme MCMC. 25
1.5 À gauche: Variance de NEO en fonction de la longueur de la trajectoire K sur l’orbite

comparé à la variance (en rouge) de l’échantillonneur préférentiel avec (K+1) échantillons
en échelle logarithmique (la variance la plus basse est à privilégier). De gauche à droite
après: Quatre exemples de trajectoires permettant de calculer l’estimateur de la constante
de normalisation selon le réglage du terme de friction γ (de gauche à droite, γ = 0.1, 1, 2),
sur une distribution cible mélange de 4 Gaussiennes. 25

1.6 Sortie consécutive des différentes étapes d’un flot normalisant (en haut) par rapport aux
étapes de MetFlow construit avec la même architecture de flot normalisant. A gauche :
prior Gaussienne standard, puis l’effet successifs des cinq transformations qui constituent
le flot. 26

2.1 MNIST (left) and Fashion MNIST (right) datasets. 34
2.2 Amortized inference scheme, [KW19]. 35
2.3 Effect of the irreversibility of an MCMC sampler. 40
2.4 Left: Variance of NEO as a function of the lengtt K of the trajectory vs Variance of

IS estimator with K samples (red) in log10-scale (the lower the better). Second left to
right: Four examples of the corresponding trajectories with the same random seed for
different values of the friction term of the conformal Hamiltonian γ (from left to right,
γ = 0.1, 1, 2). 41

2.5 Consecutive outputs of normalizing flows (top) or metropolized flows (MetFlow, bottom).
Left: prior normal distribution, then successive effect of the 5 transformations. 42

2.6 Comparison of Metropolized flow against the same normalizing flow learnt classically on
difficult target distributions in R2. 42

3.1 Consecutive outputs of normalizing flows. Left: prior normal distribution, then successive
effect of the 5 transformations. 52

4.1 From left to right: L2HMC, Lifted irreversible kernel with cIT and MALA transitions,
MALA algorithm. L2HMC performs high jump with less cover of the modes, while lifted
kernels with cIT and MALA transitions cover effectively the mixture. A classical MALA
algorithm struggles to mix. 102

4.2 From left to right: Autocorrelation plot for different implementations of NICE, for a
Mixture of Gaussian with diagonal variances of respectively 0.1 and 0.25, and 0.3 and 0.3103

4.3 From left to right: Autocorrelation plots for different implementations of NICE and
L2HMC algorithms on a Strongly Correlated Gaussian. 103

247

https://towardsdatascience.com/why-you-should-use-bayesian-neural-network-aaf76732c150

248 LIST OF FIGURES

5.1 Left: E
1[K]

Th
(K) − 1 vs EIS(K) − 1 (red) in log10-scale as a function of the length of

trajectories K (the lower the better). Second left to right: Four examples of orbits with
the same random seed for different values of γ (from left to right, γ = 0.1, 1, 2). 109

5.2 Boxplots of 500 independent estimations of the normalizing constant in dimension
d = {10, 20, 45} (from left to right) for MG25 (top) and Fun (bottom). The true value
is given by the red line. The figure displays the median (solid lines), the interquartile
range, and the mean (dashed lines) over the 500 runs. 113

5.3 Empirical 2-D histogram of the samples of different algorithms targeting MG25 (top)
and Fun (bottom). Left to right: samples from the target distribution, correlated i-SIR,
NUTS, NEO-MCMC. 114

5.4 Two examples for the Gibbs inpainting task for CelebA dataset. From top to bottom
(twice) : i-SIR, HMC and NEO-MCMC: From left to right, original image, blurred image
to reconstruct, and output every 5 iterations of the Markov chain. Last line: a forward
orbit used in NEO-MCMC for the second example. 115

5.5 Boxplots of 500 independent estimations of the normalizing constant of the Cauchy
mixture in dimension d = 10, 15 (top, bottom). The true value is given by the red
line. The figure displays the median (solid lines), the interquartile range, and the mean
(dashed lines) over the 500 runs . 131

5.6 NEO v. NEIS. 25 GM with σ2 = 0.005, d = 5. 500 runs each. 131
5.7 Forward orbits of NEO-MCMC. 132
5.8 Additional examples for the Gibbs inpainting task for CelebA dataset. From top to

bottom: i-SIR, HMC and NEO-MCMC: From left to right, original image, blurred image
to reconstruct, and output every 5 iterations of the Markov chain. 133

6.1 Sampling from N (0, Idd) with the proposal N (0, 2 Idd). The rightmost plot illustrates
the number of rejections rapidly growing for vanilla i-SIR algorithm (see Section 6.11.1
for the definition of ESS). The correlated proposals in Ex2MCMC help to achieve
efficient sampling even in high dimensions. We display confidence intervals for i-SIR and
Ex2MCMC obtained from 20 independent runs as blue and red regions, respectively. . 141

6.2 Graphical model for the proposals X1:N . 142
6.3 Sampling results for the asymmetric banana-shaped distribution. The Sliced TV, ESS

and EMD metrics are reported as functions of the dimension of the space. 144
6.4 Asymmetric banana-shaped distribution in dimension 50: projections on first two coordi-

nates.Left: MALA, right: Ex2MCMC. 145
6.5 Allen-Cahn equation. From left to right,trajectories sampled by Augmented MALA, by

FlEx2MCMC and autocorrelation plot. 146
6.6 Bayesian logistic regression: average p̂(y|x,D) for (left to right) Covertype, EEG and

Digits datasets. 146
6.7 CIFAR-10 dataset with DC-GAN architecture. From left to right, average energy values,

FID and discriminator scores for 600 sampling iterations. 147
6.8 CIFAR-10 dataset with SN-GAN architecture: From left to right, average energy values,

FID and discriminator scores for first 600 sampling iterations. 150
6.9 Sampling from mixture of two Gaussian distributions N (−1.5, Id), N (1.5, Id) in high

dimensions. 167
6.10 Funnel distribution, dim 15: projection of resulted samples on first two coordinates.

From left to right: MALA, Ex2MCMC, FlEx2MCMC 168
6.11 Sampling from Funnel distribution. 168
6.12 Symmetric banana-shaped distribution, dimension d = 50: projection of resulted samples

on first two coordinates. From left to right: MALA, Ex2MCMC, FlEx2MCMC 168
6.13 Sampling from symmetric banana-shaped distribution. 168
6.14 Ill-conditioned Gaussian: Autocorrelations vs. sampling iteration. 170

LIST OF FIGURES 249

8.1 Sampling a mixture of 8 Gaussian distributions. Top row from left to right: Target
distribution, MetFlow, MetFlow with 145 resampled innovation noise. Bottom row from
left to right: Prior distribution, First run of RNVP, Second run of RNVP. MetFlow
finds all the modes and improves with more iterations, while RNVP depend on a good
initialization to find all the modes and fails to separate them correctly. 186

8.2 Density matching example [RM15a] and comparison between RNVP and MetFlow. . . 187
8.3 Mixture of ’3’ digits. Top: Fixed digits, Middle: NAF samples, Bottom: MetFlow

samples. Compared to NAF, MetFlow is capable to mix better between these modes,
while NAF seems to collapse. 187

8.4 Top line: Mean-Field approximation and MetFlow, Middle line: Mean-Field approxima-
tion, Bottom line: Mean-Field Approximation and NAF. Orange samples on the left
represent the initialization image. We observe that MetFlow easily mixes between the
modes while other methods are stuck in one mode. 188

8.5 Consecutive outputs of each MetFlow kernel. Left: prior normal distribution, then
successive effect of the 5 trained MetFlow kernels. 197

8.6 Consecutive outputs of each block of R-NVP. Left: prior normal distribution, then
successive effect of the 5 trained R-NVP blocks - 6 transforms each. 197

8.7 Changing the prior to a mixture of two separated Gaussians, having trained the method
on a standard normal prior. Top row, from left to right: Subsituted prior, 5 trained
MetFlow kernels, re-iteration of 100 MetFlow kernels, 200 MetFlow kernels. Bottom row:
Substituted prior, R-NVP flow. 198

8.8 Number of modes retrieved by different methods. The target distribution is a mixture of
8 isotropic Gaussian distributions of variance 1 located at the corners of a d-dimensional
hypercube. The methods were trained in a way to use the same computational budget,
and mode retrieval is computed by counting the number of samples in a ball of radius
2
√
d around the center of a mode. Error bars represent the standard deviation of the

mean number of modes retrieved for different runs of the method (different initialization
and random seed). 199

8.9 The figure demonstrates, that all these methods used approximately the same computa-
tional budget. 200

8.10 Density matching for funnel. Top row: Target distribution, MetFlow with 5 trained
kernels, MetFlow with 5 trained kernel iterated 100 times. Bottom row: Prior distribution,
First run of 5 R-NVP, second run of 5 R-NVP . 201

8.11 Fixed digits for mixture experiment. 202
8.12 Mixture of 3, MetFlow approximation. 203
8.13 Mixture of 3, NAF approximation. 203
8.14 Gibbs inpainting experiments starting from digit 0. 203
8.15 Gibbs inpainting experiments starting from digit 3. 204
8.16 Gibbs inpainting experiments starting from digit 9. 204
8.17 Gibbs inpainting experiments starting from digit 6. 204
8.18 Gibbs inpainting experiments starting from digit 4. 204
8.19 Comparison of the different settings described for a mixture of digits experiment. From

left to right, deterministic setting, pseudo-random setting, fully random setting. 205

9.1 Visualization of the posterior approximation given after optimization of different bounds
for toy generation process. Top row, from left to right: True posterior, VAE posterior,
IWAE posterior. Bottom row, from left to right: VI with RealNVP posterior, A-MCVAE
posterior, L-MCVAE posterior. 216

9.2 Representation of the different estimators (top) and their gradient (bottom) of the true
log likelihood. From left to right, a/ L-MCVAE, K = 5, b/ L-MCVAE, K = 10, c/
A-MCVAE, K = 5, d/ A-MCVAE, K = 10, e/ A-MCVAE, K = 5 with control variates. 217

250 LIST OF FIGURES

9.3 Log-likelihood of L-MCVAE depending on the number of Langevin steps K. Increasing
K improves performance, however at the expense of the computational complexity. . . 218

9.4 Evolution of the held-out loglikelihood during training for A-MCVAE, L-MCVAE, IWAE
and VAE on MNIST. 219

S5 Squared error for parameter’s estimates, obtained using different models. 223
S6 Representation of the different estimators (left) and their gradient (right) of the true

log likelihood. From left to right, a/ L-MCVAE, K = 5, b/ L-MCVAE, K = 10,
c/ L-MCVAE, K = 1, learnable reverse, d/ L-MCVAE, K = 2 learnable reverse, e/
A-MCVAE, K = 5, f/ A-MCVAE, K = 10, g/ A-MCVAE, K = 5 with control variates. 223

List of Tables

4.1 Mixture of Gaussians with diagonal covariances 0.1 and 0.25 in dimension 10 102
4.2 Mixture of Gaussians with diagonal covariances 0.3 and 0.3 in dimension 10 102
4.3 Strongly Correlated Gaussian in dimension 2 . 103

5.1 Evaluation of the log-likelihood (normalizing constant) of different Variational Auto
Encoders. 133

5.2 Negative Log Likelihood estimates for VAE models for different latent space dimensions. 135

6.1 GAN sampling from 243 Gaussians . 148
6.2 Results for Swiss Roll dataset . 148
6.3 CIFAR-10 hyperparameters for DC-GAN architecture. 149
6.4 CIFAR-10 hyperparameters for SN-GAN architecture. 150
6.5 FID for CIFAR-10 GAN-based models . 151
6.6 Hyperparameters used in experiments. 164
6.7 GAN sampling from mixture of Gaussian distributions 170

9.1 Results of the different models on MNIST. A more detailed version of this table is
included in the supplementary material. 218

9.2 Results of the different models on CelebA. A more detailed version of this table is
included in the supplementary material. 11400 must be added to all scores in this table. 219

9.3 Results of the different models on CIFAR. A more detailed version of this table is included
in the supplementary material. 2800 must be added to all scores in this table. 220

9.4 Results of the different models on MNIST with different annealing schemes. 224
9.5 Full results of the different models on CelebA. All scores must be added 11400 in this table.225
9.6 Results of the different models on CIFAR-10 with different annealing schemes. All scores

must be added 2800 in this table. 226

251

252 LIST OF TABLES

Appendix A

Appendix and supplementary material

A.1 Notations, definitions and general Markov chain theory

In this section, we recall some basic facts and notations in a form that is useful for establishing properties
of Markov chains. Let (Z,Z) be a measurable space where Z is a countably generated σ-algebra.

Definition 73 (Kernel). A kernel on Z×Z is a map P : Z×Z → R+ such that

(i) for any A ∈ Z, z 7→ P (z,A) is measurable;

(ii) for any z ∈ Z, the function A 7→ P (z,A) is a finite measure on Z.

Definition 74 (Markov and sub-Markovian kernel). A kernel P is Markovian (or P is a Markov
kernel) if P (z,Z) = 1 for all z ∈ Z. A kernel P is submarkovian (or P is a sub-Markov kernel) if
P (z,Z) 6 1 for all z ∈ Z.

For f : Z→ R a measurable function, ν a probability distribution, and P a kernel on Z×Z, we let

ν(f)
:=∫
f(z)ν(dz) and denote for (z,A) ∈ Z×Z,

νP (A) =

∫
ν(dz)P (z,A) , Pf(z) =

∫
P (z, dz′)f(z′) .

Further, for (z,A) ∈ Z×Z define recursively for n > 2: Pn(z,A) =
∫
Pn−1(z, dz′)P (z′, A).

Definition 75 (Total variation distance). For µ, ν two probability distributions on (Z,Z) we define the
total variation distance between µ and ν by ‖µ− ν‖TV := sup|f |61 |µ(f)− ν(f)|, where the supremum is
taken over the measurable function f : Z→ R.

Definition 76 (Harmonic function). Let P be a kernel on (Z,Z). Then a non-negative measurable
function h : Z→ R is said to be harmonic if Ph = h.

Definition 77 (Irreducibility). Let ν be a non trivial σ-finite measure on
(
Z,Z

)
. A kernel P is said

to be ν-irreducible if for all (z,A) ∈ Z×Z such that ν(A) > 0 there exists n = n(z,A) ∈ N such that
Pn(z,A) > 0.

Definition 78 (Periodicity and Aperiodicity). P is periodic if there exists n ∈ N, n > 2, and Ai ∈ Z
for i ∈ 1, . . . , n, non-empty and disjoint, such that for z ∈ Ai, P (z,Ai+1) = 1 with the convention
An+1 = A1. Aperiodicity is the negation of periodicity.

General Markov chain theory provides us with powerful tools to establish validity and convergence
of MCMC algorithms, leading to basic convergence theorems such as those found in [Tie94, Theorem 1
and 3] and distilled below. We informally comment on the result below.

253

254 APPENDIX A. APPENDIX AND SUPPLEMENTARY MATERIAL

Theorem S79 ([Tie94]). Suppose P is such that πP = P and is π−irreducible. Then π is the unique
invariant probability distribution of P and for any f : Z→ R such that π(|f |) <∞

lim
n→∞

n−1
n∑
i=1

f(Zi) = π(f) , (S1)

almost surely for π−almost all z ∈ Z. If in addition P is aperiodic then for π−almost all z ∈ Z

lim
n→∞

‖Pn(z, ·)− π(·)‖TV = 0 . (S2)

The result is fairly intuitive. Invariance of π is a fixed point property ensuring that if Zi ∼ π
then Zi+1 ∼ π. π−irreducibility simply says that the Markov chain should be able to reach any set
of π−positive probability from any z ∈ Z in a finite number of iterations. Periodicity would clearly
prevent (S2) since the Markov chain would then periodically avoid visiting sets of positive π−probability.
Averaging in (S1) removes the need for this property. We note that establishing these properties is often
overlooked and a necessary prerequisite to any more refined analysis characterising their performance,
such as quantitative finite time convergence bounds as found for example in [Dal17; DK19; DM17].

A.1.1 Proof for the AIS estimator

Note that if we suppose that γt has a density on Rd also denoted γt for 0 6 t 6 K+1, and that for x ∈ Rd,
γt(x) > 0 =⇒ γt+1(x) > 0, then we can define the Radon-Nikodym derivative dγt+1/dγt = γt+1/γt.
However, we only require the condition γt � γt+1 in the following.

Define the extended proposal distribution

Q(dx0:K) = q(dx0)
K∏
t=1

Mt(xt−1,dxt) , (S3)

and similarly, the extended target unnormalized distribution (with normalizing constant Z)

P(dxK:0) = π̃(dxK)

1∏
t=K

Mt(xt, dxt−1) (S4)

Lemma S80. By [And+18], we have,

K∏
t=0

dγt+1

dγt
(xt)Q(dx0:K) = P(dxK:0) . (S5)

We can thus write the estimator, sampling for 1 6 i 6 n, x(i) ∼ Q,

ẐAIS(x1:n) =
1

n

n∑
i=1

[
K∏
t=0

dγt+1

dγt
(x

(i)
t)

]
. (S6)

Proof. The proof is given in [And+18] and goes as follows. Note, for 1 6 t 6 K, Zt =
∫
γt the

normalizing constant of the distribution γt, and note µt = γt/Zt and µ = µK+1 = γK+1/ZK+1 = γ/Z.
By convention,

∏K
t=j = I for j > K.

The proof is direct if K = 0. Suppose now K > 1. We show by induction for 1 6 j 6 K that

1

Z
P(dxK:0) (S7)

=

[
j∏
t=1

dµK−t+2

dµK−t+1
(dxK−t+1)MK−t+1(xK−t, dxK−t+1)

]
µK−j+1(dxK−j)

K∏
t=j+1

MK−t+1(xK−t+1,dxK−t) .

(S8)

A.1. NOTATIONS, DEFINITIONS AND GENERAL MARKOV CHAIN THEORY 255

For j = 1, we have

1

Z
P(dxK:0) = µ(dxK)

1∏
t=K

Mt(xt, dxt−1) (S9)

=
dµK+1

dµK
(dxK)µK(dxK−1)MK(xK−1, dxK)

1∏
t=K−1

Mt(xt, dxt−1) (S10)

as MK is γK-reversible. Assume now the result holds for some 1 6 j 6 K. Then we write

µK−j+1(dxK−j)MK−j(xK−j , dxK−j−1) =
dµK−j+1

µK−j
(dxK−j)µK−j(dxK−j)MK−j(xK−j , dxK−j−1)

(S11)

=
dµK−j+1

µK−j
(dxK−j)µK−j(dxK−j−1)MK−j(xK−j−1,dxK−j) .

(S12)

This identity concludes the recursion. Thus, for j = K, we write

1

Z
P(dxK:0) =

K∏
t=0

dµt+1

dµt
(xt)Q(dx0:K) (S13)

=
K∏
t=0

Zt
Zt+1

dγt+1

dγt
(xt)Q(dx0:K) (S14)

=
1

Z

K∏
t=0

dγt+1

dγt
(xt)Q(dx0:K) , (S15)

as Z0 = 1 as we assume that m is normalized. Finally, the estimator is the Monte Carlo estimator of∫
P(dxK:0).

Titre : Nouvelles approches variationnelles pour l’inférence et l’apprentissage

Mots clés : Variationnel, Inférence, Apprentissage, Monte Carlo, chaînes de Markov

Résumé : Cette thèse porte sur le problème de l’in-
férence en grande dimension. Nous proposons dif-
férentes méthodes pour l’estimation de constantes
de normalisation et l’échantillonnage de distributions
complexes. Dans une première partie, nous dévelop-
pons plusieurs méthodes de Monte Carlo par chaînes
de Markov. D’une part, nous développons une nou-
velle approche pour des noyaux non-réversibles.
D’autre part, nous proposons deux méthodes massi-
vement parallélisables combinant des propriétés lo-
cales et globales des méthodes de Monte Carlo par
chaînes de Markov, en particulier en se basant sur
un nouvel estimateur de constante de normalisation.

Nous appliquons ces méthodes à une tâche d’infé-
rence approchée de distribution a posteriori de ré-
seaux de neurones bayésiens profonds, dans un cas
où l’espace d’état est à très haute dimension. Dans
une deuxième partie, nous proposons deux modèles
génératifs, basés sur une nouvelle forme de flots nor-
malisants combinés à des chaînes de Markov, ou à
de nouvelles méthodes d’inférence variationnelle, en
construisant en particulier un nouvel auto encodeur
variationnel. Ces méthodes permettent en particulier
de combiner inférence variationnelle et Monte Carlo
par chaînes de Markov.

Title : Novel Variational Approaches to Inference and Learning

Keywords : Variational, Inference, Learning, Monte Carlo, Markov chain

Abstract : This thesis addresses the problem of
high dimensional inference. We propose different me-
thods for estimating normalizing constants and sam-
pling complex distributions. In a first part, we deve-
lop several Markov chain Monte Carlo methods. On
the one hand, we develop a new approach for non-
reversible kernels. On the other hand, we propose
two massively parallelizable methods combining local
and global properties of Markov chain Monte Carlo
methods, in particular based on a new normalization

constant estimator. We apply these methods to the
approximate inference of the posterior distribution of
deep Bayesian neural networks, in a case where the
state space is very high dimensional. In a second
part, we propose two generative models, based on
a new form of normalising flows combined with Mar-
kov chains, or new variational inference methods, by
building in particular a new variational autoencoder.
These methods allow in particular to combine varia-
tional inference and Monte Carlo by Markov chains.

Institut Polytechnique de Paris
91120 Palaiseau, France

	I Introduction
	Introduction et motivation
	Introduction générale
	Inférence bayésienne et réseaux de neurones bayésiens
	Introduction à l'inférence bayésienne
	Réseaux de neurones bayésiens

	Modèles génératifs
	Modèles fondés sur l'énergie et comment les apprendre
	Modèles à variables latentes
	Auto Encodeurs Variationnels

	Introduction aux chaînes de Markov
	Conclusion et plan
	Résumé des contributions
	Méthodes d'échantillonnages et de simulation
	Modèles génératifs
	Inférence approchée en apprentissage profond bayésien

	Introduction and motivation
	General introduction
	Bayesian Inference
	Bayesian neural networks

	Generative modelling
	Energy based models and how to learn them
	Latent variable models
	Variational Auto Encoders

	Introduction to Markov chain Monte Carlo methods
	Conclusion and plan
	Contributions
	Sampling and simulation methods
	Generative models
	Application to Bayesian Deep Learning: Efficient Approximate Inference with Gaussian Stochastic Weight Averaging

	General Background
	Classical estimators of normalizing constants
	High dimensional simulation and sampling techniques
	Generative models and approximate simulation

	II Contributions: Simulation and Sampling methods
	Non-reversible MCMC
	Introduction
	(, S)-reversibility and the Generalized MH rule
	Generalized Metropolis-Hastings
	GMH for particular proposal maps

	Applications and examples
	Generalized Hamiltonian Dynamics
	Lifted kernels

	Notations, definitions and general Markov chain theory
	Standard reversible MH
	Proofs
	Proof of (4.4)
	Proof of prop:extension-tierney
	Proof of theo:extension-tierney
	Checking the GMH rule (4.7)
	Expressions for a and b
	Applications of (4.7): case with densities
	Proof of theo:irredandco
	Proofs of (4.13) and (4.14)
	Proof of (4.17)

	Proofs
	Generalized Hamiltonian Monte Carlo algorithms
	Proof of (4.28)
	Implementation details of example:cIT
	Proof of lem:alternaccfun
	Lifted acceptance probability with deterministic proposals
	L2HMC Algorithms

	Experiments

	NEO: Non Equilibrium Sampling
	Introduction
	NEO-IS algorithm
	NEO-MCMC algorithm
	Continuous-time version of NEO and NEIS
	Experiments and Applications
	Conclusion
	Proofs
	Additional notation
	Proof of (5.3)
	Proof of theo:cltconstinfine
	Proof of theo:biasmsesnis
	Proof of lem:chi2ET
	Proofs of NEO MCMC sampler

	Continuous-time limit of NEO and NEIS
	Proof for the continuous-time limit
	NEIS algorithm after rotskoff:vanden-eijden:2019
	NEO with exit times

	Iterated SIR
	Additional Experiments
	Normalizing constant estimation
	Gibbs inpainting

	NEO and VAEs
	Log-likelihood estimation
	Definition of a NEO-VAE

	Ex2MCMC: Sampling through Exploration Exploitation
	Introduction
	Ex2MCMC
	From Importance Sampling to Sampling Importance Resampling
	From SIR to iterated Sampling Importance Resampling (i-SIR)
	Dependent proposals for i-SIR and Ex2MCMC algorithms
	Dependent Gaussian proposals
	Related Work

	Adaptive Ex2MCMC algorithm
	Experiments
	Sampling experiments
	Sampling from GAN as Energy-based model (EBM)

	Conclusions
	Sampling GANs as energy-based model on CIFAR-10
	DC-GAN
	SN-GAN

	Proofs
	Proof of lem:invariance-P-N
	Proof of theo:isirunfiromergodicity
	Proof of theo:main-geometric-ergodicity
	Proof of thm:invariant-distribution-X-Try-corr

	Metropolis-Adjusted Langevin rejunevation kernel
	Technical lemmas for Metropolis-Adjusted Langevin kernel
	Algorithms
	Numerical experiments
	Metrics
	Normalizing flow RealNVP
	Adaptive strategy for tuning the stepsize in the MALA algorithm
	High-dimensional Gaussian distribution sampling
	Mixture of 25 Gaussian distributions in 2d
	Distributions with complex geometry
	Bayesian Logistic regression
	Mixture of two Gaussian distributions
	Allen-Cahn equation
	Sampling from Ill-Conditioned Gaussian distribution
	Sampling from GAN as an Energy-Based Model
	GANs as energy-based models: artificial datasets
	Sampling GANs as energy-based model on CIFAR-10.

	Approximate Inference in Bayesian Deep Learning

	III Contributions: Generative models
	MetFlow: MCMC & VI
	Introduction
	A New Combination Between VI and MCMC
	Basics of Metropolis-Hastings
	Variational Inference Meets Metropolis-Hastings

	MetFlow: MCMC and Normalizing Flows
	Related Work
	Experiments
	Synthetic data. Examples of sampling.
	Deep Generative Models

	Conclusions
	Proofs
	Proof of coro:induction-argument
	Proof of propo:2
	Proof of coro:ReversibilityMphiRphi
	Checking the Assumption of prop:density-one-iteration for RWM and MALA algorithms

	Reparameterization trick and estimator of the gradient
	Expression for the reparameterization trick
	Unbiased estimator for the gradient of the objective
	Extension to Hamiltonian Monte-Carlo

	Optimization Procedure
	Optimization in the general case
	Optimization for MetFlow

	Experiments
	Mixture of Gaussians: Additional Results
	Funnel distribution
	Real-world inference - MNIST
	Additional setting of experiments

	Monte Carlo Variational Auto Encoders
	Introduction
	Variational Inference via Sequential Importance Sampling
	SIS estimator
	AIS estimator
	SIS-ELBO using unadjusted Langevin

	Variational Inference via Annealed Importance Sampling
	Differentiating Markov kernels
	Differentiable AIS-based ELBO

	Experiments
	Methods and practical guidelines
	Toy 2D example and Probabilistic Principal Component Analysis
	Numerical results for image datasets

	Discussion
	Notations and definitions
	Experiences
	Toy example
	Probabilistic Principal Component Analysis
	Additional experimental results

	Proofs
	Proof of SIS and AIS Identities
	Proof of (9.14)
	Proof of lem:langevinmapdiff

	ELBO AIS
	Construction of the control variates
	Discussion of wunoe2020stochastic

	Appendix and supplementary material
	Notations, definitions and general Markov chain theory
	Proof for the AIS estimator

