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Abstract

Linguists have developed a theory classifying grammars by their complexity on
a formal and computational way. Our goal here is, given a set of sentences from a
specific language, to infer the complexity of the associated grammar. We develop in
the following a Probabilistic Grammar Model that will be flexible enough to fit the
sentences observed using a Sequential Monte Carlo Method. In the end, we want to
perform model comparison between different classes of grammar, in the form of a
Bayes Factor. Our model will be a Hierarchical Dirichlet Process, introduced in Yee
Whye Teh and M.Blei (2016). The final motivation is to apply then this methodology
to data from primates (Campbell’s monkeys more precisely), to draw a meaningful
conclusion on the complexity of their grammar (key problem already recognized as
such in Jiang X (2018)).

In this dissertation, we will derive theoretical properties for the model, proving
the relevance of the Bayes Factor in that case, and other conclusion on the behaviour
of sentences produced by this type of models. A simulation study will also be pre-
sented to illustrate the theoretical points previously drawn.
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1 Introduction

1.1 Motivation

Campbell’s monkeys (Cercopithecus campbelli) can communicate through relatively evolved
vocalizations, made of seven building blocks: Boom, Hok, Hok-oo, Krak, Krak-oo, Wok,
Wok-oo. Different papers in linguistics journals, such as Schlenker et al. (2014), Ouattara
et al. (2009) ask a series of relevant questions concerning the complexity of the primate’s
grammar, given that the sentences can be relatively long and elaborate :

• Boom Boom Hok-oo Hok-oo Hok-oo Hok-oo Hok-oo Krak-oo

• Hok Hok Hok-oo Krak-oo Krak-oo Wok-oo Wok-oo Wok-oo Krak-oo

• Hok Wok-oo Hok Krak-oo Krak-oo Krak-ooWok-oo Krak-oo Krak-oo Krak-oo
Krak-oo Krak-oo Krak-oo Wok-oo Wok-oo Krak-oo Krak-oo Krak-oo Krak-oo

The complexity of a grammar can be assessed using Chomsky hierarchy (or Chomsky-
Schutzenberger hierarchy) presented in Chomsky (1956) or Jager and Rogers (2012),
which defines different classes for formal grammars, which we will develop in the lat-
ter.

The goal of this study is to construct a Bayesian Non Parametric Model for formal gram-
mars, to model in particular Campbell’s Monkeys language, and assess in the end the com-
plexity of their grammar. It is important to note that the model presented in the following
has already been developed by Lawrence Murray, Robin Ryder and Judith Rousseau. My
contribution to that model relies on the Theoretical Results and Simulation Study parts of
this dissertation. Moreover, this paper has been written in parallel of a paper that will be
published in the next future with Lawrence Murray, Robin Ryder and Judith Rousseau,
and thus any resemblance between this dissertation and the upcoming paper is completely
intentional and deliberate.

1.2 Definition of a Formal Grammar

A formal grammar is defined by a set of rules over a given dictionary for a certain lan-
guage. More formally, let us denote for a certain set X , X∗ the set of sentences over X ,
i.e. X∗ = {a1...an;n ∈ N, a1, ..., an ∈ X}, a1...an being the concatenation of a1, ..., an.

Let us also denote, for sets X and Y , XY = {ab; a ∈ X, b ∈ Y }.

Then, a formal grammar is defined as G = (A,B, S,R), containing

• a finite set of terminal symbols A = {a1, . . . , aK}

• a finite set of non-terminal symbols B = {B0, . . . , BJ}
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• a distinguished non-terminal symbol B0, the start symbol, often denoted by S in
the literature

• a finite set of rules R, each of the form α → β where α ∈ B (in context-free
grammars - our interest here) and β ∈ (A ∪ B)∗.

In the following dissertation and model, we will only work in the Greibach Normal Form,
introduced by Greibach in Greibach (1965). In this setting, all rules are of the form
α→ β where α ∈ B and β ∈ A(B)∗, which means that any rule is of the form:

B → aB1...Bn

where B is a non terminal symbol, a a terminal symbol, and B1...Bn is a sequence of non
terminals, possibly empty.

Note that any grammar considered in this dissertation can be equivalently written in the
Greibach Normal form (Greibach (1965)), which validates our setting.

1.2.1 Production of a sentence from a grammar

To produce a sentence from a grammar G, start with the symbol S and then iteratively
apply rules, until there are no non-terminals left. We present first an example before
going further into detail of the production of a sentence.

Consider this simple grammar which produces a few English sentences, withK = 4,A =
{the girl, an apple, an orange, eats} a1 =”the girl”, a2=”eats”, a3 =”an apple”, a4 =”an
orange”, B = {B0, B1, B2}, andR contains the elements

• r0,1 : B0 → a1B1

• r0,2 : B0 → a1B1B2

• r1,1 : B1 → a2

• r2,1 : B2 → a3

• r2,2 : B2 → a4

This grammar produces the following sentences:

• a1a2 =“the girl eats” (apply rules r0,1 and r1,1)

• a1a2a3 =“the girl eats an apple” (apply rules r0,2, r1,1 and r2,1)

• a1a2a4 =“the girl eats an orange” (apply rules r0,2, r1,1 and r2,2)

More formally, define the stack Xt of non terminal symbols representing all non terminal
symbols left to treat. The stack of non terminal symbols Xt and the sentence y will be
initialized by X0 = (B0) and y0 = []. A rule is then applied to the non terminal at the top
of the stack, which will add exactly one word (terminal) to the sentence - as we are using
Greibach Normal form, and a random number of non-terminals to the stack. It goes on
until there are no more non terminal symbols in the stack. The sentence produced is the
last one observed.

2



Let us present a typical example.

• y0 = [], X0 = (B0). We apply the rule B0 → a3B1B3.

• y1 = [a3], X1 = (B1B3). We apply the rule B1 → a1B2.

• y2 = [a3a1], X2 = (B2B3). We apply the rule B2 → a2.

• y3 = [a3a1a2], X3 = (B3). We apply the rule B3 → a1.

• y4 = [a3a1a2a1], X4 = (). The stack is empty, we stop here.

The sentence produced is thus y = [a3a1a2a1].

This presents the production of a sentence from a grammar. It is important to notice that
for each latent variable Bi, we have a set of rules. Only one of those rules will be at each
step, as presented above.

1.2.2 Hierarchy of the formal grammars

The Chomsky hierarchy (presented in Chomsky (1956)) can be summarized in the fol-
lowing figure:

Figure 1: Chomsky Hierarchy for formal grammars

We can see here that the different classes are nested into another. They go from the least
complex, the regular class, to the most, the recursively enumerable. The classes have
also been described in Jager and Rogers (2012), which presents a refinement of Chomsky
Hierarchy. The human languages are usually between the context-sensitive class and the
context free, but we will focus here on the context-free and regular classes. Proving then
that Campbell’s monkeys grammar belongs at least to the context-free class would then
be a big result.

In the Greibach Normal Form, a regular grammar has production rules of the form B →
aC where B,C ∈ B, a ∈ A or B → a where B ∈ B, a ∈ A. The length of a rule is then
either 0 or 1. This looks like a Hidden Markov Model structure, where the hidden state is
the latent variable in B, and the emission at each step is a word from A. One of the key
features here, like in Hidden Markov Models, is that there is no possibility for long term
memory.
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A context-free grammar, on the other hand, has production rules of unbounded length,
i.e., in Greibach Normal Form, of the form B → aB1...Bn where n ∈ N, (n can be equal
to 0), B,B1, ..., Bn ∈ B , a ∈ A. This produces a tree, where each node can be associated
with a non terminal symbol in B, and each leaf to a word a ∈ A.

Our problem here is simple to state. We are given a set of sentences (produced by Camp-
bell’s monkeys for the prior motivation, for example), with the hypothesis that they are
issued from a formal grammar G. The goal is to decide which class of grammars G be-
longs to, i.e. to perform the test :
H0: "G is a regular grammar" versus H1: "G is a context-free grammar".

1.3 Definition of a Probabilistic Grammar

We can now define a probabilistic extension to our formal regular and context-free gram-
mars. For a formal grammar G = (A,B, B0,R), we denote as Rj the set of rules which
start with Bj , i.e. Rj = R ∩ {(Bj → β) : β ∈ AB∗}, the rules that can be applied when
Bj is at the top of the stack. If we define a probability distribution Pj over each of theRj ,
we obtain a probabilistic grammar.

We define thus a probabilistic grammar as G = (A,B, B0,R,P), where (A,B, B0,R)
is a formal grammar, and let J + 1 = |B| be the number of non terminal symbols. P =
(P0, . . . , PJ) is such that each Pj (j = 0 . . . J) is a probability distribution onRj .

To define such grammar, we will use in the following the acronym PCFG, which means
Probabilistic Context-Free Grammars, our field of study here.
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2 Presentation of the Model for Probabilistic Context Free
Grammars

We now want to model a probabilistic context free grammar G = (A,B, B0,R,P). The
set A is here given and finite. The set B of latent variables is assumed random in the
modelling, and infinite to avoid bounding it by a pre-determined number of distinct non
terminal symbols. We can then be sure that our model is non-parametric. We thus have
that R and P must be infinite as well, and random. We will use Dirichlet Processes (in-
troduced by Ferguson (1973)) for the modelling of those infinite random sets, denoted in
the following asDP (M,H), whereM > 0, andH is a probability distribution on a given
measurable set.
In the following, we will use alternatively the Sethuraman representation of the Dirichlet
process (Sethuraman (1994)) or the equivalent form of the Chinese Restaurant Process,
D.J. (1985) (variant of the also equivalent Polya Urn representation, Blackwell and Mac-
Queen (1973)).

2.1 Chinese Restaurant Process and Sethuraman Representation

The Sethuraman representation (Sethuraman (1994)) is also called the stick-breaking con-
struction. To model the Dirichlet Process Q ∼ DP (M1, H0), where H0 is a probability
distribution on R., we sample

Vi
iid∼ Beta(M1, 1) for i ∈ N∗, bj

iid∼ H0 for j ∈ N∗

Then the Sethuraman representation (Sethuraman (1994)) defines Q the random measure
such that

qj = Vj
∏
i<j

(1− Vi) , Q =
∞∑
j=1

qjδ(bj)

Where δ(bj) is the probability measure putting all its mass on bj .

Let us remember the Chinese Restaurant Process (D.J. (1985)). It is a discrete-time
stochastic process, parametrized by a base measure, here noted as H and a concentra-
tion parameter, here noted as M . It is non parametric as it can have an infinite number of
tables (here, the features), and goes recurrently like this.

• The first customer (Customer 1) sits at table 1

• After n customers, suppose there are p tables occupied, and denote the number of
customers at table 1 ≤ k ≤ p by c(n)k . Then Customer n + 1 chooses table k with
probability

c
(n)
k

n+M
or a new table (which will be denoted as table p+ 1 afterwards) with probability

M

n+M

5



.

One of the key features of the Chinese Restaurant process is that even if it is non para-
metric and an infinite number of tables will be occupied almost surely, it has a "riches get
richer" property (the more you are at a table, the more probably you are chosen for the
next customer). That way, we can approximate quite effectively the Process, stopping at
a given number of tables (which will be increasing with the goodness of our approxima-
tion).

2.2 Formal Model

Note that in the Greibach Normal form, a grammar rule for Bi is determined by a word a
in A , a number of non terminal symbols L (in {0, 1} for regular grammars, or in N for
context free grammars), and the non terminal symbols associated B1, ..., BL ∈ B.

Let µA be a probability distribution on A and HL a probability on the set of non negative
integers N.

The probabilistic model is then defined by the following hierarchy:

• (i) Model for B: B0 = 0 and let Q ∼ DP (M1, H0), where H0 is a probability
distribution on R. Then the Sethuraman representation (Sethuraman (1994)) Q
means that

Q =
∞∑
j=1

qjδ(bj), qj = Vj
∏
i<j

(1− Vi), Vi
iid∼ Beta(M1, 1), bj

iid∼ H0

In other words B = {B0, bj, j ≥ 1}.

• (ii) Model for P : The probabilistic model for rules RB : B → aB1 · · ·BL is
described as: For all B ∈ B generate independently PB ∼ DP (M2, HP (·|Q)),
where HP (·|Q) is a probability distribution on A× ∪∞n=0Bn defined by:

HP (β = (a,B1 · · ·BL)|Q) = µA(a)HL(L)

(
L∏
j=1

Q(Bj)

)1L>0

, (1)

The rules Rb (in the form b→ β ) are then generated by:

Ri
b|Pb

iid∼ Pb, i ≥ 1

Conditionnally on Q, we can integrate out the Pb’s and obtain the marginal distribution
of the rules Rt,Bt : Bt → βt, t = 1, · · · , n, which are described by independent Chinese
Restaurant Processes (D.J. (1985)): denote for each B, It(B) = {i ≤ t;Bi = B} where
Bi here refers to the latent state in the rule Ri,Bi

and Nt(B) the cardinality of It(B), then
if Bt = B

PBt=B (βt|Bt = B,Ri,Bi
, i ≤ t− 1) = PBt=B (βt|Bt = B, βi, i ∈ It−1(B))

=
M2

M2 +Nt−1(B)
HP (βt|Q) +

1

M2 +Nt−1(B)

∑
i∈It−1(B)

δ(βi)

(2)

6



We can then further integrate outQ, which is called only in 2 when a rule is sampled from
HP . We can rewrite (2) as

Zt ∼ Ber
(

M2

M2 +Nt−1(B)

)
If Zt = 1 then βt ∼ HP (βt|Q) else

βt ∼
1

Nt−1(B)

∑
i∈It−1(B)

δ(βi).

Let Zt = {i ≤ t;Zi = 1} and B(Zt) = ∪i∈ZtBβi where Bβi is the set of latent nodes
appearing in βi (possibly non distinct), i.e. if βi = (ai, Li, B1, · · · , BLi

), then Bβi =
{B1, · · · , BLi

)}. Note that if a value B appears twice (or more) in the collection of sets
Bβi , i ≤ t, then it appears twice (or more ) in B(Zt).

Then the marginal distribution of (Rt,Bt , Zt, t ≤ n) is given by the following conditional
rule : if Bt = B and Rt,Bt : B → βt, then

Zt ∼ Ber
(

M2

M2 +Nt−1(B)

)
if Zt = 0 then

βt ∼
1

Nt−1(B)

∑
i∈It−1(B)

δ(βi),

else β ∼ HP (βt|B(Zt)) defined by

HP (βt = (at, Lt, B
t
1, · · · , Bt

Lt
)|B(Zt)) = µA(at)HL(Lt)Q((Bt

1, · · · , Bt
Lt
)|B(Zt))

where Q is the Chinese restaurant process associated to the model Bi|Q
iid∼ Q, and Q ∼

DP (M1, H0) so that

Q(dBn|B1, · · · , Bn−1) =
M1

M1 + n− 1
H0(dBn) +

1

M1 + n− 1

n−1∑
i=1

δ(Bi)(dBn). (3)

For any finite set of sentences Y , there always exists an infinite number of regular gram-
mars which generate Y , but these might be extremely complex (large number of non-
terminals and/or rules). To perform our model choice, we therefore need to define a
probability distribution over the set of all Probabilistic Context Free Grammars, which
penalizes grammars with more non-terminals and more rules.

Since we wish the number of non-terminals and rules to be unbounded, but to penalize
large numbers, a natural model is the Chinese Restaurant Process.

We now construct a probabilistic context free grammar based on Greibach normal form by
permitting the set of non-terminals, B, and set of rules,R, to be of countably-infinite size,
and providing a suitable probabilistic model over them. Although these sets are infinite,
the number of non-terminals and rules used to generate a finite set of finite sentences will
necessarily be finite.

7



2.3 Process for rules

For each non-terminal Bj , we have a set of rules Rj . Each of these rules come from a
Chinese Restaurant Process, meaning there is one Chinese Restaurant Process per non-
terminal. When we need to process non-terminal Bj , we generate a rule from the Chinese
Restaurant Process Cj . The nj-th time that Bj is on the stack, we pick existing rule rji
with probability nji

nj+θ
, and we create a new rule with probability θ

nj+θ
.

2.4 Creating a new rule

When we need to create a new rule, it will be of the form rji : Bj → akBk1Bk2 . . . Bkl .
The process to create a rule is:

• Draw ak ∼ Categorical(A) (with Dirichlet prior on probabilities).

• Draw l ∼ Poisson(λ).

• Draw sequentially Bk1 , . . . , Bkl from a Chinese Restaurant Process C̃.

At each step, there is therefore a positive probability of generating one or several new
non-terminals which had never been observed before.

If we wish to generate a regular grammar instead of a PCFG, we need to impose l ∈
{0, 1}, so we replace the step l ∼ Poisson(λ) by l ∼ Bernoulli(p).

We have a hierarchy of Chinese Restaurant Processes: the Chinese Restaurant Process
C̃ which generates non-terminals, and for each non-terminal Bj , the Chinese Restaurant
Process Cj which generates rules inRj.

This process will be the one used in the simulations for the length, at the end of this
dissertation.

2.5 Method for assessing the complexity

The idea, from those models, is to compute the different PCFG, with probability distribu-
tions for the length of the rules being different in the regular or the context free class.

For regular grammar, all rules are of length 0 or 1, hence the probability distribution HL

on N will be a Bernoulli, of parameter p a given hyperparameter of the model.

For Context free grammars, the length of rules is not bounded, hence HL will typically be
a Poisson Law, of parameter λ, which we will further investigate in the simulation study
part.

Once those models are settled, we can compute in each case a marginal likelihood for
each model, given a set of sentences, by exploring a number of potential grammars in
under each hypothesis.

8



Using Sequential Monte-Carlo method, we can then compute a Bayes Factor to draw
conclusions about our problem. However, the simple idea of a Bayes Factor has no sense
if the probability of hypothesis H0 under H1, PH1(H0), is not equal to 0.

This question is not evident at all, considering it is not clear which context-free grammar
can be expressed in terms of regular grammars (There is no simple criterion that allows us
to conclude that a context-free grammar can or cannot be expressed in terms of a regular
grammar).

This will be the main contribution (proving that the Bayes Factor is a reasonable tool for
model choice).

We will afterwards do a study of the probability that a sentence drawn from this process
is finite.

9



3 Theoretical Results

3.1 Proof of the relevance of the Bayes factor

Consider the set G of grammars such that almost surely, if G = (A,B, B0,R,P) ∈
G, then B ∈ B ⇒ EPB

(LB) ≤ 1, where LB is the function which associates a rule from
RB to its length. G is thus the set of grammars with rules length expectation all inferior
or equal to 1, for each non-terminal symbol. We have obviously all regular grammar in
G, as the length of each rule can only be 0 or 1.

We will compute then PH1(∀i,E[Li] ≤ 1|(PBi
)i∈N), where PBi

is the Dirichlet process
for the rules issued by the i-th latent variable Bi, and Li the random variable modelling
the length of a rule drawn from PBi

, i.e PH1(G) in our model.

We will denote {PBi
, i ∈ N} as P , as noted before.

First, let us notice that conditionally on PBi
the Dirichlet process for the rules issued by

the i-th latent variable Bi, Li the length of the rule drawn from PBi
is independent to all

other (PBj
)j 6=i.

Hence, P(E(Li) ≤ 1|PBi
) = P(E(Li) ≤ 1|(PBi

)i∈N), by conditional independence (as
E(Li) ≤ 1|PBi

is deterministic).

It is also important to note that P(E(Li|P)) = P(E(Li)|P): Indeed, as E(Li) is a deter-
mined function given P . We will thus in the following use either of the form, according
to which is the clearer at the moment.

Let us denote Ai the event Ai = {E(Li) ≤ 1|(PBi
)i∈N}.

We have lim sup(Ai) = {∀i,E(Li) ≤ 1|(Pi)i∈N}.

Given PBi
, the distribution of Li is known, as Li is just the marginalisation on the length

of the rule issued from PBi
. It stays known given all the (PBi

)i∈N}

We thus have that E(Li|(PBi
)i∈N}) which is deterministic, as the distribution of Li is

known given PBi
.

Then, the events {E(Li|(PBi
)i∈N}) ≤ 1} and {E(Lj|(PBi

)i∈N}) ≤ 1} for i 6= j are inde-
pendent, as different deterministic events.

From there, we can apply Borel-Cantelli’s lemma for independent events which state that
their lim sup is either 0 or 1.

10



In H1, let i be in N. The probability of drawing the first rule in PBi
to be of probability

superior to 3/4 is strictly positive for any α ∈ R+
∗ constant of the Dirichlet Process asso-

ciated with the rules. And the probability for drawing the length of that rule to be superior
to 2 is also strictly positive, for any λ ∈ R constant of the Poisson distribution for the
length of the rules. Hence, the event {E(Li) ≥ 3

4
× 2 = 3

2
} has a probability strictly

superior to zero, and P(E(Li) ≤ 1|(PBi
)i∈N) < 1.

We thus have P(lim sup(Ai)) = P(∀i,E(Li) ≤ 1|(PBi
)i∈N) < 1, and thus

P(lim sup(Ai)) = P(∀i,E(Li) ≤ 1|(PBi
)i∈N) = 0

As we had PH1(∀i,E(Li) ≤ 1|(PBi
)i∈N) ≥ PH1(H0), we have in the end PH1(H0) = 0.

We thus have that the Bayes factor is relevant, and our method is applicable !

Moreover, we can see that by the same reasoning, we can catch more results on the be-
haviour of our rules under our prior model, which are described in the next lines.

On the same way, under H1, for any m ∈ R+ P(∀i,E(Li) ≤ m|(PBi
)i∈N) = 0.We thus

have that almost surely, the Li are not bounded.

Let us prove that P(∀i,E(Li) ≤ +∞|(PBi
)i∈N) = 1.

Let i be in N, m be in R.

By Markov inequality, we have:

P(E(Li|P) ≤ m) ≤ E(E(Li|P))
m

Moreover, we know that the marginal expectation for the Li is the expectation of the
Poisson law for the length of the rule, hence,

P(E(Li|P) ≤ m) ≤ λ
m

Taking m to infinity, we do have in the end P(E(Li|P) = +∞) = 0
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3.2 Galton-Watson Trees and Generalization

For the next section, we introduce an alternative representation of the model, with Galton
Watson Trees.

A Galton-Watson tree (described fully in Abraham and Delmas (2015)) is a simple model
for a branching population. It was originally introduced by Francis Galton to investigate
the propagation of family names, on the following baseline:

Let us suppose each adult male transmits his family name to his children. The name is
surviving at the next generation if one of the children carrying it is a male (the offspring
is randomly chosen to be male of female). Else, if there is no male descendant, the family
name dies. One of the key assumption here is that the distribution of the offspring is the
same for all individuals along the process.

The study of that process allows us to define a probability of survival of the family name,
which was a key concern in the mid 19-th Victorian England when aristocratic families
were afraid their family name could become extinct. They thus asked Sir Francis Galton
(1873,Educational Times): How many male children (on average) must each genera-
tion of a family have in order for the family name to continue in perpetuity?, which was
answered in 1874 by his paper One the probability of extinction of families with the intro-
duction of this model (Watson and Galton (1875)).

More formally, let us describe the model as presented by Abraham and Delmas (Abraham
and Delmas (2015)).

3.2.1 Formal Representation of a Monotype Galton Watson Tree

Let ζ be a random variable in N distributed according to p = (p(n))n∈N : p(n) =
P(ζ = n). Let m = E(ζ) the expectation of ζ and g its generating function : g(r) =∑

i∈N p(i)r
i = E(rζ).

The evolution of the Galton Watson process (Zn)n∈N with offspring distribution p is de-
fined as follows:

• Zn is the size of the population at the time n. Initially, we have Z0 = 1.

• The size of the population at time n + 1 given the population at time n is obtained
by summing all the children of each individual alive at time n. Each individual
has a random number of children, sampled from the distribution p - thus identically
distributed as ζ - and all independent from each other. Each individual alive at
the generation n dies after giving birth (each individual has only one generation of
children).

12



Mathematically it can be written: (with the convention that
∑0

i=1 = 0): Set Z0 = 1 and
for n ∈ N∗: Zn =

∑Zn−1

i=1 ζ
(n)
i Where (ζ

(n)
i )i,n∈N are independent realisations of p, thus

distributed as ζ .

The extinction event can be defined by E = {∃n ∈ N;Zn = 0}.

Now, the key question is, considering a given offspring distribution p, to compute the ex-
tinction probability P(E).

Following Abraham and Delmas (2015), we define the distribution to be

• critical, ifm(p) = E(ζ) where ζ is distributed according to p is equal to 1m(p) = 1.

• sub-critical if m(p) < 1.

• super-critical if m(p) > 1.

3.2.2 Computation of the Extinction Probability

This subsection presents results from Abraham and Delmas Abraham and Delmas (2015)
on extinction probability in a mono-type Galton Watson Trees case.

A few particular cases arise, when studying the extinction probability.

First, if p(0) = 0, then almost surely we have the survival of the population at each step,
hence P(E) = 0.

If p(0) = 1, we have extinction almost surely and P(E) = 1.

Finally, if p(0) + p(1) = 1, we have the Galton Watson process which can be modeled
as the realisation of a geometric variable (Here, the total height of the tree), of param-
eter p(1). Then, either p(1) = 1 and the tree is just an infinite spine almost surely and
P(E) = 0, or p(1) < 1 and we have P(E) = 1.

Those cases treated, let us suppose now that 0 < p(0) < 1 and p(0) + p(1) < 1.

One can notice that under those conditions, the generating function g is strictly convex.

Let us prove first that the probability of extinction must be a fixed point of g.

For that, let us take a tree τ with root u, and denote, for any vertex v in τ , kv(τ) the size
of the offspring of v in τ .

13



We have
P(E) = P(E(τ)) =

∑
k∈N

P(E(τu1), ..., E(τuk)|ku(τ) = k)p(k)

by the law of total probability, denoting τui the Galton Watson tree having as a root the
i-th children of u the root of τ (for i ≤ ku(τ)).

By the properties of Galton Watson trees, the events E(τu1), ..., E(τuk) are independent
given ku(τ) = k. Moreover, by the identically distributed property of all offsprings, we
have, for any i ≤ ku(τ), P(E(τui)|ku(τ) = k) = P(E). We can thus write

P(E) =
∑
k∈N

P(E)kp(k) = g(P(E))

And thus, P(E) is a fixed point for g.

Now, remember that under the conditions described before, g is strictly convex.

We thus have two different cases.

If g is sub-critical or critical, we have g′(1) ≤ 1, and g(1) = 1. We thus have that
g′(x) < 1, x < 1. It means that the function h = g − Id is monotonous over [0, 1] (and
strictly decreasing on [0, 1) ). That means that h can be equal to 0 at most once on [0, 1]
and thus 1 is the only fixed point of g on [0, 1] in that case.

Therefore, the probability of extinction P(E) of the tree τ is equal to 1 in the critical and
sub-critical cases.

If g is super-critical, there will be two fixed points for g in [0, 1], 1 and q ∈ [0, 1). We
will prove that P(E) = q. Let t be a certain finite determined tree. Let τ be a Galton
Watson tree, with offspring distribution p (with generating function g), and consider the
distribution

p̃(n) = qn−1p(n)

We have that p̃ is a distribution, as
∑

n∈N p̃(n) =
∑

n q
n−1p(n) = g(q)/q = 1, and the

Galton Watson tree associated τ̃ is sub-critical :

∀r ∈ [0, 1], g̃(r) =
∑
n∈N

rnqn−1p(n) =
g(rq)

q

and thus g̃′(r) = g′(rq) , hence g̃′(1) = g′(q) < 1 and τ̃ is sub-critical.

Finally, we can write, for any finite determined tree t,

qP(τ̃ = t) = q
∏
u∈t

p(ku(t))q
ku(t)−1 = q1+

∑
u∈t (ku(t)−1)

∏
u∈t

p(ku(t)) = P(τ = t)

as we have P(τ = t) =
∏

u∈t p(ku(t)) and
∑

u∈t ku(t) = |t|−1, so 1+
∑

u∈t (ku(t)− 1) =
0.

Summing over all finite trees, we have

P(E(τ)) = qP(E(τ̃)) = q

14



as τ̃ has a sub-critical offspring distribution.

In the case where all individuals in the Galton Watson Tree have the same offspring dis-
tribution, we have a clear criterion to determine if a tree is finite or not, and if not, with
what probability it will become extinct (i.e, converge).

Let us now consider a multi type setting, more appropriate in our case, where each of the
non-terminal symbols Bi has its own offspring distribution.

3.2.3 Generalization on a multi-type Galton Watson Tree

In that subsection, we propose a novel generalization of the computation of the extinction
probability in a multi-type Galton Watson tree (with a finite number of types). Studies
of the sort have been presented in Abraham and Delmas (2016) or Seneta (1970), but no
clear generalization of the fixed point method have been presented. This will be our goal
here. The study has indeed been performed so far under the hypothesis that all individ-
uals have the same offspring distribution. However, in our case, an individual represents
a latent variable Bi so that each different individual has a specific offspring distribution
PBi

.
We thus have to introduce and generalize that study for multi-type trees.

In the following, we will suppose that there are at mostD types of individuals (in the Chi-
nese Restaurant Process setting, it just means that only D tables have been discovered).

Each type i of individuals will have the same offspring distribution Pi. A realization ζi of
Pi will be a vector of RD:
ζi =

(
ζi(1)ζi(2)...ζi(D)

)
where ζi(j) represents the number of children of type j of ζi.

We will denote as well, at the n-th generation, the vector Zn =
(
Zn(1)...Zn(D)

)
to be

the vector of all individuals alive, Zn(i) denoting the number of individuals alive at gen-
eration n of type i for i ∈ 1, ..., D .

To define properly this multi-type Galton Watson process as before, we can write:

• Z0 =
(
1, 0, ...0

)
the vector with a 1 on the first line (for the presence of the start

symbol only in the stack) and zeros elsewhere.

• On the same way, at generation n+1, the generation n dies by giving birth to their
offspring, only this time the offspring will be separated into the different types.

We can thus write mathematically, as before: Z0 =
(
1, 0, ...0

)
and for n ∈ N∗,

Zn =
D∑
i=1

Zn−1(i)∑
t=1

ζ
(t)
i (4)

where, for each i in {1, ..., D}, the (ζ
(t)
i )t are independent identically distributed random

vectors according to Pi. This can be written coordinates by coordinates, considering that
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the (ζ
(t)
i )i,t are vectors of RD.

Zn(j) =
D∑
i=1

Zn−1(i)∑
t=1

ζ
(t)
i (j) ∀j ∈ {1, ..., D}

Let us now remember the expression of a generating function for a random vector in
ND. If ζ =

(
ζ(1), ...ζ(D)

)
is a random vector in ND with probability distribution

(p(n1, ..., nD), (n1, ..., nD) ∈ ND), we have its generating function:

g(r1, ...rD) = E(rζ11 ...r
ζD
D ) =

∑
(n1,...,nD)∈ND

p(n1, ..., nD)
D∏
i=1

rni
i

We can now define a generalized multidimensional generating function for Zn. We will
note in the following the generating function of ζi distributed as Pi as

gi(r1, ...rD) = EPi
(r
ζi(1)
1 ...r

ζi(D)
D ) =

∑
(n1,...,nD)∈ND

Pi(n1, ..., nD)
D∏
i=1

rni
i (5)

We define now the generalized multidimensional generating function for Z1.

G : [0, 1]D → (R+)D (r1, ...rD) 7→ (g1(r1, ...rD), ..., gD(r1, ..., rD)) (6)

Notice that G here takes into account all distributions.

We note in the following, for clarity reasons, r = (r1, ..., rD).

The same way, we now define gi, n© the generating function of (Zn) given that the n-th
parent of (Zn) - that is the root of the tree we are looking at at generation n is of type i.
Let us call its distribution Pi,n.

gi, n©(r1, ...rD) = EPi,n
(r
Zn(1)
1 ...r

Zn(D)
D ) =

∑
(n1,...,nD)∈ND

Pi,n(n1, ..., nD)
D∏
i=1

rni
i (7)

On the same way, we define G n©(r) the generalized multi-type generating function by

G n©(r) = (g1, n©(r), ..., gD, n©(r)) (8)
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G n© stores the information of the tree for any type of root.

Let us now go into computations to derive an expression for G n©.

We have by the definition of gi, n©,

E(E(rZn(1)
1 ...r

Zn(D)
D |Zn−1,P , root of type i) = gi, n©(r)

Let us call the event {Zn−1,P , root of type i} = An,i

and

gi, n©(r) = E(E(
D∏
l=1

D∏
i=1

Zn−1(i)∏
t=1

r
ζ
(t)
i (l)

l |An,i))

thanks to the expression of Zn in 4.

And

E(
D∏
l=1

D∏
i=1

Zn−1(i)∏
t=1

r
ζ
(t)
i (l)

l |An,i) =
D∏
i=1

E(
D∏
l=1

Zn−1∏
t=1

r
ζ
(t)
i (l)

l |An,i)

.

However, the (ζ
(t)
i )t are independent and identically distributed. We can thus get the

product out of the expectation and write

E(
D∏
l=1

D∏
i=1

Zn−1(i)∏
t=1

r
ζ
(t)
i (l)

l |An,i) =
D∏
i=1

E(
D∏
l=1

r
ζ
(t)
i (l)

l |An,i)Zn−1(i)

.

We recognize then E(
∏D

l=1 r
ζ
(t)
i (l)

l |An,i) to be equal to gi(r).

Hence, we have

E(
D∏
l=1

D∏
i=1

Zn−1(i)∏
t=1

r
ζ
(t)
i (l)

l |An,i) =
D∏
i=1

gi(r)
Zn−1(i)

.

And in the end,

gi, n©(r) = E(
D∏
i=1

gi(r)
Zn−1(i))
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.

That is, for n ∈ N∗, with the convention g
i, 0© = Id ∀i ∈ {1, ..., D},

gi, n©(r) = g
i,n-1© (g1(r), ..., gD(r)) (9)

For G n©, it means then
G n© = Gn-1© ◦G (10)

where ◦ is the multivariate composition of functions (between functions of RD to RD).

Now, the goal is, as before, to determine criteria for the convergence of the tree (i.e., if it
is extinct).

First, let us notice that again, the gi are convex (and even strictly convex under reasonable
assumptions as before). Moreover, they are positive and increasing along each coordinate
for every r ∈ [0, 1]D.

We also have, in virtue of the derivation of functions,

G′n©(r) = G′n-1© (G(r))×G′(r)

with G′n©(r) = (
∂g n©,i

∂rj
)i,j∈{1,...,D}.

We also have G′(1, ..., 1) = G′(1) = (EPi
(Zj))i,j∈{1,...,D}, where we note in the following

the vector 1 =
(
1, 1, ...1

)
As the gi are all convex and increasing along each coordinate, we can say that over the set
[0, 1]D, G′ is necessarily maximized for any norm at 1. Considering the norm of G′ might
prove that G is a contraction mapping, in which case we would have a unique fixed point.
Let us compute the operator norm of G′(1) , that is, supu∈[0,1]D ||G′(1)u||.

3.2.4 Fixed Point Discussion and Extinction Probability in the multitype setting

The first intuition leads us to compute this operator norm for different norms for u, that
is ‖.‖1 , ‖.‖2 and ‖.‖∞, in order to draw conclusion on the existence of fixed points other
than 1. We will present the results for ‖.‖1 and ‖.‖∞ in the following.
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We have G′(1)u = (
∑D

k=1 EPi
(Zk)uk)i As all EPi

(Zk) are positive, the u taken to max-
imize the quantity above must have all negative or all positive coordinates. we can thus
suppose without loss of generality that they are all positive, and

‖G′(1)u‖1 =
D∑
i=1

D∑
k=1

EPi
(Zk)uk

We maximize this quantity with respect to uk for each k, and in the end:

∂ ‖G′(1)u‖1
∂uk

=
D∑
i=1

EPi
(Zk)

In order to maximize ‖G′(1)u‖1, under the constraint ‖u‖1 = 1, we must thus choose
u = (0, ..., 0, 1, 0, ..., 0) = ek0 such that k0 = argmax1≤k≤D

∑D
i=1EPi

(Zk). We thus
have

|||G′(1)|||1 = max
1≤k≤D

D∑
i=1

EPi
(Zk)

On the same way,

‖G′(1)u‖∞ = max
1≤i≤D

D∑
k=1

EPi
(Zk)uk

We can thus maximize this quantity by taking u = 1 and in that case,

|||G′(1)|||∞ = max
1≤i≤D

D∑
k=1

EPi
(Zk)

We recognized here the maximum expectation of the length of the rules for each Bi

To have G a contraction mapping, we should have |||G′(1)||| < 1. However, in the case of
the infinity norm, |||G′(1)|||∞ < 1 means that for all i, the expectation of the length of a
rule must be strictly inferior to 1. However, we proved in the first part of this section that
it almost surely did not happen.

Moreover, for the norm L1, this could be even larger as it is not bounded |||G′(1)|||1 =

max1≤k≤D
∑D

i=1EPi
(Zk) as D the number of types increases: for example, for each Bi,

except B1, we could have EPi
(Z1) = 1. Then |||G′(1)|||1 would explode linearly in D

without being necessarily unreasonable in terms of length: (for all j ≤ D, B0 → Bj ,
B1 → a, and for 2 ≤ i ≤ D, Bi → a′B1 forms a grammar with the properties described
and that does not generated sentences longer than 2 words, but |||G′(1)|||1 explodes in D).

Trying to find a contraction mapping criterion for G did not prove conclusive then, and
we will try in the following to draw conclusions given fixed points for G.

Let us define now the sequence (un)N of RD recursively:

• u0 = (0, ..., 0)

• un+1 = G(un)
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We have, by an immediate recurrence, that un = G n©(0)

Hence, in regard of our previous points concerning the gi, n©, we have that

un = P (Zn(1) = ... = Zn(D) = 0)

.

Moreover, as G is a bounded function of [0, 1]D to [0, 1]D, we have that un is bounded.
We thus have a sub-sequence that is convergent in [0, 1]D. We also have an increasing
coordinate by coordinate as all gi are increasing, and thus we have the convergence of the
whole sequence un.

We could also have assessed the increasing of the sequence coordinate by coordinate by
noticing that the event Zn(1) = ... = Zn(D) = 0 is included in the event Zn+1(1) = ... =
Zn+1(D) = 0.

The limit must thus be a fixed point of G, by the theory of recursive sequences, and let us
show that limit is the minimum coordinate by coordinate of all fixed points (which means
in particular that if there are two fixed points, 1 is not the limit).

Let r∗1, r∗2 be two fixed points of G. We will show by induction that each gi, n©(0) is in-
ferior for all n to (min(r∗1(i), r

∗
2(i))), for all 1 ≤ i ≤ D. It is obviously true at rank 0.

Suppose now it is true at rank n.

We haveGn+1© (0) = G n©◦G(0). Let j be in 1, ..., D. Denote aj = gj(g1, n©(0), ..., gD, n©(0))
and we have each of the gi, n©(0) ≤ min(r∗1(i), r

∗
2(i)). Suppose here without loss of gen-

erality that min(r∗1(j), r
∗
2(j)) = r∗1(j). We have gi, n©(0) ≤ r∗1(i), and in particular, as gj

is increasing on each direction, we have aj ≤ gj(r
∗
1(1), ..., r

∗
1(D)).

Hence aj ≤ r∗1(j) as r∗1 is a fixed point of G. Our induction is thus complete. By an imme-
diate generalization, we can extend to results to the minimum coordinate by coordinate to
all fixed points of G. Call that minimum by coordinate vector r∗. We know that un con-
verges towards a fixed point of G, called ru for example. Then, coordinate by coordinate,
we have ru ≥ r∗ by definition of r∗, and by the recurrence, for each n, un ≤ r∗ ≤ ru.

Hence, we have ru = r∗ and un converges toward the fixed point r∗ with minimal coor-
dinates among all other fixed points, and, if the type of the root is j, the probability of
extinction of the tree is r∗(j).

We thus have extended the Galton Watson extinction theory to multi-type trees, and thus
to our problem here.
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4 Simulation Study

In the light of the theoretical outcomes presented before, we conducted a simulation study
for different values of the different hyper-parameters of the problems for the prior distri-
bution of our grammar.

We will first describe the code used before presenting the results obtained.

4.1 Presentation and Architecture of the code

We will use Python object oriented abilities to construct different classes for modelling
the hierarchy of our model here.

First, we construct the object DP_B, the Chinese Restaurant Process on the latent variables
(the (Bi)i∈N). This was noted as Q in the formal presentation of our model. It will have
three attributes: alphathe dispersion parameter for the process, tablesa list representing
all the tables discovered so far, stocking the number of customers sitting down at each
table, and nthe total number of customers so far. We implement as well two methods in
that class: __init__for initialization of the Chinese Restaurant Process, which only takes
alphain argument, and creates a Chinese Restaurant Process with dispersion parameter
alpha,and one table with one customer on it. We also create the method new_Bwhich
models the arrival of a new customer in the restaurant on the standard Chinese restaurant
process procedure. It returns afterwards the table chosen (it samples from the current
Chinese Restaurant Process).

Second, we construct DP_rules(respectively DP_rules_reg), the Chinese Restaurant
process associated with one of the latent variables Bi describing the rules in the con-
text free case (respectively in the regular case. This begins to be more complicated as
the hierarchy is starting to appear. This was noted as P in the formal presentation of our
model. The attributes will here be:

• again, alpha1, the dispersion parameter for the Dirichlet Processes on the rules.

• The index i of the latent variable associated with the Dirichlet Process we are
constructing

• rules a list of the rules themselves (Reminder: a rule will be of the form Bi →
ajBj1 ...Bjk) so here rule will be modelled here as a sequence of latent variables
(stocked here as [j1, ..., jk]. Those rules are the tables of our Chinese Restaurant
Process.

• count an array associated with the list rules,counting the number of customers at
each table. Thus, count and rules will be of the same length at all time.

• ni the number of customers for the Dirichlet process associated with the i-th latent
variable Bi.
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• lambd the parameter for the Poisson law regulating the length of each rule, or
respectivelypthe parameter for the Bernoulli law in the regular case.

As before, we build a few functions for the evolution of this Dirichlet Process.

• First, a function __init__ initializing the Dirichlet Process with all its attributes.

• Second, new_rule adds a table to the Chinese Restaurant Process. The function
is here separated from the global evolution function for clarity. It takes also in
argument DP_Ba Dirichlet process on the latent variables themselves. We first
generate a Poisson variable (respectively a Bernoulli variable)len of parameter
lambd(respectively p), then sample len latent variables from DP_B and stack them
to create our rule. We then add this rule to the list rules, and update counts ac-
cordingly.

• Finally, the function rulesamples from the Chinese Restaurant Process on a more
classic way.

Finally, the class Sentence(respectively, Sentence_reg) describes the grammar sam-
pling sentences (or, more accurately, their length only as we are not interested in the
words themselves here). The attributes are again more complicated to model the hierar-
chy between the different Dirichlet processes.

• The length len of the sentence.

• The stack of variables stackmodelling the latent variables still to apply.

• The Dirichlet Process on the latent variables DPB of the class DP_B presented above.

• A list of Dirichlet Processes on rules of class DP_rules(respectively DP_rules_reg)
associated with a latent variables DP_i which will evolve as variables appear.

• An array appearedwhich remembers which latent variable has appeared in the rules
and thus has a Dirichlet Process associated in DP_i.

• A parameter for the Poisson law for rules lambd,or respectively the Bernoulli pa-
rameter p.

• A dispersion parameter alpha for the Dirichlet Process on the latent variables DPB.

• A dispersion parameter alpha1 for the Dirichlet Processes on the rules associated
with one latent variable DP_i.

The class Sentence(or Sentence_reg) has two functions. One for initialization as al-
ways, __init__, which takes all the attributes as arguments, except for len which is
initialized to 0 and stackwhich is initialized to the array [1] (we only have the start sym-
bol at first in the stack). It is important to notice that here DPB the Dirichlet process on
the (Bi)i∈N, DP_i the list of Dirichlet processes on the rules for each Bi and appeared
are given as arguments, which allow us to generate multiple sentences associated with
the same grammar (Again, the grammar here is entirely defined by DPB the non-terminal
symbols and DP_i the set of rules associated).
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The other function is next_step, which is applied directly on the sentence without any
further arguments. It applies the first variable in the stack and upload then the stack
and the length of the sentence. If the variable has appeared, it generates a rule from the
Dirichlet Process associated and uploads the stack. Else, it creates the Dirichlet Process
associated with that variables, generates a rule from that Dirichlet Process, and uploads
DP_i, appeared, stack, and len. Moreover, it uses the function of the classes DP_B
and DP_rules to generates rules and variables, which means it modifies consequently the
attributes of the sentence as new variables and rules are sampled. The trick is also that
it returns a boolean depending on if the stack is empty or not, or if the sentence is said
to be infinite (Here, we will consider the sentence infinite when its length is over 100 -
we could do more, but for computation efficiency, 100 is a good choice - especially as if
not said to be infinite, the sentence length does not normally goes over 20). That way, we
know if the sentence is over or not and when to switch to the next.

In the end, to simulate multiple sentences for a grammar, we initialize and object of the
class Sentence and generate multiple sentences until using the same parameters until they
are over. Reusing the previous DP_B, DP_rules and appeared makes sure we are using
the same grammar.

In order to gain information as well on the variable E(L|P,Q, sentence finite) where P,Q
are defined in the Presentation of the linguistics grammar modelling, we generate mul-
tiple grammars (DP_B and DP_rulesin our code) from which we generate multiple sen-
tences. We can thus build an empirical distribution of E(L|P,Q, sentence finite), and
then vary hyper-parameters to get some intuition about their role. As well as computing
E(L|P,Q, sentence finite), we can also compute the median of the length of sentences.
This method is more robust as well, as it does not need to truncate the distribution at 100,
as long as the median does not overpass 100, and which will be directly comparable to
the results in the regular case (where all sentences are finite almost surely). We can also
compute, in the context free model, a probability of extinction that will vary according to
our hyperparameters, and help us get some intuition as well.

4.2 Simulation results

On the following figures, we present the results of the simulation of the length of sentences
generated from different grammars, with different sets of hyperparameters. The error bars
on Figure 2 represent a 95% Confidence Interval for E(L|P,Q, sentence finite), computed
with their empirical distribution (which is approximated using a large number of Dirichlet
processes - Q, P - , computing E(L|P,Q, sentence finite) for each. We kept on purpose
just the largest on top, to show that the approximation of the event {Sequence infinite} by
the event {length of the sentence ≤ 100} is very reasonable.

On both Figure 2 and Figure 3, we can see a general trend. Not only does the length
expectation decrease with the λ parameter in the Poisson law, as expected, but we also
have a distinct decrease of the length expectation or median both on the M1 concentration
parameter of the Dirichlet Process on the non terminal symbols Bi, but also on the M2

concentration parameter of the Dirichlet Process on the rules, generated from each Bi.
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Figure 2: Expectation of the length of a sentence generated by a Context Free Grammar

We can interpret that decrease the following way. The higher the concentration parameter,
the flatter and well distributed along the base distribution the Dirichlet Process will be. In
that case, it means the higher the concentration parameter, the closer the distribution of the
length of the rules will be to the original Poisson Law. Hence, the higher the concentration
parameter, the more controllable the length of the sequences.

Finally, it appears that the parameter M2 has a stronger effect on that decrease than M1,
which is reasonable according to the same reasoning, considering the fact that it controls
more closely the distribution of the length of the rules for each variable Bi.

The behaviour of the probability of extinction is quite intuitive, once we described those
behaviours. Indeed, a better control of the distribution of length drawn from the Dirichlet
Processes induces an increase in the probability of extinction. However, we can argue that
this change in the probability of extinction is really small (around 10−4) so all parameters
are quite relevant here. One might then argue that studying higher values of λ or smaller
values for M1 and M2 could be also interesting, but it did not prove however conclusive
regarding the length of the sentences produced.

Let us now consider the sentences generated from regular grammars, to see if any dif-
ferences can be spotted regarding the length in our prior models, with the close sets of
hyperparameters.

It appears the sentences produced are of the same length and that EH0(L|P,Q) seems to
be distributed quite the same way. It can be considered logical, considering the fact that
using a Poisson law with parameter λ in [0.2, 0.5] puts the 90 to 98% of the probability
mass between 0 and 1.
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Figure 3: Median of the length of a sentence generated by a Context Free Grammar
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Figure 4: Probability of convergence of a sentence generated by a Context Free Grammar

In the end, our simulations showed how the length of the sentences and their convergence
could be functions of the hyperparameters, and we determined a global set of hyperpa-
rameters that could be relevant for our study, typically, the hyperparameters presented
here (all other tries for hyperparameters were not represented for reasons of clarity and
lightness).
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Figure 5: Expectation of the length of a sentence generated by a Regular Grammar
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Figure 6: Median of the length of a sentence generated by a Regular Grammar

Moreover, the simulations showed our two prior models (regular and context free) are
quite accurate: they could represent sentences of the same length, which means the only
thing that would increase Bayes Factor in one way or the other would be the actual com-
plexity of the sentences, and not their length.
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5 Conclusion

This dissertation presented the baseline for a model to assess the complexity of a formal
grammar, discerning the regular and context free classes for complexity. The model pre-
sented existed already and was well defined, however the method and the results produced
were not that evident. In this work (and in the paper to come), we presented a proof that
the Bayes Factor to compare marginal likelihoods in order to draw a line between regular
and context free grammars was well defined, which did not come off that easily consid-
ering the various forms the rules can be shaped into, making the border blurry between
regular and context free grammars in the generalized case. Moreover, we extended the
work on the probability of extinction of Galton Watson trees on (finite) multi-typed trees,
deriving a generalized generating function and extinction probability. However, it is still
not clear what happens in the infinite multi type case, or when D the number of types
goes to infinity. A continuation of the work here would then be to use the Sethuraman
form of the Dirichlet Process to derive bounds or approximation when D goes to infinity,
or determine the behaviour of the fixed point of G the generalized generating function
when D the number of types goes to infinity. This work will be continued in prevision of
the paper to come with Lawrence Murray, Robin Ryder and Judith Rousseau. Finally, all
work has here been done on the prior model, to give us intuition or theoretical beliefs. It
would be a natural extension of the work as well to see to what extent the posterior will
differ in terms of length expectation or probability of extinction of the tree.

27



6 Bibliography

References
Abraham, R. and Delmas, J.-F. (2015). An introduction to galton-watson trees and their

local limits. arXiv preprint arXiv:1506.05571.

Abraham, R. and Delmas, J.-F. (2016). Critical multi-type galton-watson trees condi-
tioned to be large. arXiv preprint arXiv:1511.01721v2.

Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via polya urn schemes.
Ann. Statist., 1(2):353–355.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113–124.

D.J., A. (1985). Exchangeability and related topics. Lecture Notes in Mathematics,
Springer, Berlin, Heidelberg, 1117.

Ferguson, T. S. (1973). A bayesian analysis of some nonparametric problems. Ann.
Statist., 1(2):209–230.

Greibach, S. A. (1965). A new normal-form theorem for context-free phrase structure
grammars. J. ACM, 12(1):42–52.

Jager, G. and Rogers, J. (2012). Formal language theory: refining the chomsky hierar-
chy. Philosophical transactions of the Royal Society of London. Series B, Biological
sciences, 367.

Jiang X, Long T, C. W. L. J. D. S. W. L. (2018). Production of supra-regular spatial
sequences by macaque monkeys. Current Biology, 18.

Ouattara, K., Lemasson, A., and Zuberbühler, K. (2009). Campbell’s monkeys concate-
nate vocalizations into context-specific call sequences. Proceedings of the National
Academy of Sciences, 106(51):22026–22031.

Schlenker, P., Chemla, E., Arnold, K., Lemasson, A., Ouattara, K., Keenan, S., Stephan,
C., Ryder, R., and Zuberbühler, K. (2014). Monkey semantics: two âĂŸdialects’ of
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7 Appendix

7.1 Python code

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

c l a s s DP_B :
" D e f i n i t i o n o f t h e DP on t h e l a t e n t B v a r i a b l e s "

def _ _ i n i t _ _ ( s e l f , a l p h a ) :
s e l f . a l p h a = a l p h a
s e l f . t a b l e s = np . ones ( 1 )
s e l f . n = 1

def new_B ( s e l f ) :
r and = np . random . un i fo rm ( low= 0 . , h igh = 1 . , s i z e = 1)
l b = 0
f o r i in range ( s e l f . t a b l e s . s i z e ) :

i f r and < ( l b + s e l f . t a b l e s [ i ] / ( s e l f . n + s e l f . a l p h a ) ) :
s e l f . t a b l e s [ i ] += 1
s e l f . n +=1
re turn ( i )
break

l b += s e l f . t a b l e s [ i ] / ( s e l f . n + s e l f . a l p h a )
##New t a b l e c r e a t e d

s e l f . t a b l e s = np . append ( s e l f . t a b l e s , 1 )
re turn ( s e l f . t a b l e s . s i z e )

# ####################################################################
# #################CONTEXT FREE GRAMMARS##############################
# ####################################################################
c l a s s DP_ru le s :

" D e f i n i t i o n o f t h e DP on t h e r u l e s f o r each B_i "

def _ _ i n i t _ _ ( s e l f , a lpha1 , i , lambd ) :
s e l f . a l p h a 1 = a l p h a 1
s e l f . r u l e s = l i s t ( )
s e l f . c o u n t = np . ones ( 0 )
s e l f . i n d e x = i
s e l f . n i = 0
s e l f . lambd = lambd
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## D e f i n i t i o n o f a new r u l e ( s e q u e n c e o f numbers
## f o r t h e l a t e n t v a r i a b l e s )
def new_ru le ( s e l f , DPB ) :

l e n = np . random . p o i s s o n ( lam = s e l f . lambd )
# p r i n t ( l e n )
r = np . ones ( 0 )
i f ( l e n = = 0 ) :

re turn ( r )
f o r k in range ( l e n ) :

## A c t u a l i z e t h e DP a s s o c i a t e d w i t h a l l v a r i a b l e s
r = np . append ( r , DPB . new_B ( ) )

re turn ( r )

def r u l e ( s e l f , DPB ) :
r and = np . random . un i fo rm ( low= 0 . , h igh = 1 . , s i z e = 1)
## I n i t i a l i z a t i o n : c r e a t e a new r u l e
i f ( s e l f . n i = = 0 ) :

s e l f . r u l e s . append ( s e l f . new_ru le (DPB ) )
s e l f . n i = 1
s e l f . c o u n t = np . ones ( 1 )
re turn ( s e l f . r u l e s [ 0 ] )

e l s e :
r and = np . random . un i fo rm ( low= 0 . , h igh = 1 . ,

s i z e = 1)
l b = 0
f o r i in range ( l e n ( s e l f . r u l e s ) ) :

i f rand <( l b + s e l f . c o u n t [ i ] / ( s e l f . n i + s e l f . a l p h a 1 ) ) :
## I n c r e m e n t t h e c o u n t i n g f o r s p e c i f i e d r u l e
s e l f . c o u n t [ i ] +=1
s e l f . n i +=1
re turn ( s e l f . r u l e s [ i ] )
break

l b += s e l f . c o u n t [ i ] / ( s e l f . n i + s e l f . a l p h a 1 )
r = s e l f . new_ru le (DPB)
s e l f . r u l e s . append ( r )
s e l f . c o u n t = np . append ( s e l f . count , 1 )
re turn ( r )

c l a s s S e n t e n c e :
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" D e f i n i t i o n o f a grammar p r o d u c i n g "
" a s e n t e n c e − w i t h o u t words , j u s t i t s c o n s t r u c t i o n "

def _ _ i n i t _ _ ( s e l f , DPB, DP_i , lambd , a lpha , a lpha1 , a p p e a r e d ) :
s e l f . l e n = 0
s e l f . s t a c k = np . ones ( 1 )
s e l f . DPB = DPB
s e l f . DP_i = DP_i ## l i s t o f DP f o r t h e r u l e s
s e l f . lambd = lambd
s e l f . a l p h a = a l p h a
s e l f . a l p h a 1 = a l p h a 1
s e l f . a p p e a r e d = a p p e a r e d

def n e x t _ s t e p ( s e l f ) :
i f s e l f . s t a c k . s i z e == 0 :

# p r i n t ( ' S e n t e n c e over ' )
re turn ( F a l s e )

i f s e l f . l e n == 200 :
p r i n t ( ' S e n t e n c e i n f i n i t e ' )
re turn ( F a l s e )

e l s e :
## I f t h e v a r i a b l e has appeared
i f s e l f . s t a c k [ 0 ] in s e l f . a p p e a r e d :

c u r r e n t = s e l f . s t a c k [ 0 ]
i n d e x = s e l f . a p p e a r e d . i n d e x ( c u r r e n t )
## Take t h e DP a s s o c i a t e d w i t h t h a t v a r i a b l e
##and g e n e r a t e a r u l e
aux = s e l f . DP_i [ i n d e x ] . r u l e ( s e l f . DPB)
## A c t u a l i z e t h e s t a c k
s e l f . s t a c k = np . i n s e r t ( s e l f . s t a c k [ 1 : ] , 0 , aux )
## i n c r e m e n t t h e l e n g t h o f t h e s e n t e n c e
s e l f . l e n += 1

e l s e :
c u r r e n t = s e l f . s t a c k [ 0 ]
## A c t u a l i z e t h e appeared l i s t o f
## a l r e a d y seen v a r i a b l e s
s e l f . a p p e a r e d . append ( c u r r e n t )
## A c t u a l i z e t h e l i s t o f DP o f r u l e s a c c o r d i n g l y
s e l f . DP_i . append ( DP_ru le s ( a l p h a 1 = s e l f . a lpha1 ,

i = c u r r e n t ,
lambd = s e l f . lambd ) )

## A c t u a l i z e t h e s t a c k and t h e l e n g t h
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i n d e x = s e l f . a p p e a r e d . i n d e x ( c u r r e n t )
aux = s e l f . DP_i [ i n d e x ] . r u l e ( s e l f . DPB)
s e l f . s t a c k = np . i n s e r t ( s e l f . s t a c k [ 1 : ] , 0 , aux )
s e l f . l e n += 1

re turn ( True )

# ####################################################################
# ######################REGULAR GRAMMARS##############################
# ####################################################################

c l a s s DP_rules_Reg :
" D e f i n i t i o n o f t h e DP on t h e r u l e s f o r each B_i "

def _ _ i n i t _ _ ( s e l f , a lpha1 , i , p ) :
s e l f . a l p h a 1 = a l p h a 1
s e l f . r u l e s = l i s t ( )
s e l f . c o u n t = np . ones ( 0 )
s e l f . i n d e x = i
s e l f . n i = 0
s e l f . p = p

## D e f i n i t i o n o f a new r u l e ( s e q u e n c e o f numbers f o r t h e
## l a t e n t v a r i a b l e s )
def new_ru le ( s e l f , DPB ) :

l e n = np . random . b i n o m i a l ( n =1 , p = s e l f . p )
# p r i n t ( l e n )
r = np . ones ( 0 )
i f ( l e n = = 0 ) :

re turn ( r )
f o r k in range ( l e n ) :

## A c t u a l i z e t h e DP a s s o c i a t e d w i t h a l l v a r i a b l e s
r = np . append ( r , DPB . new_B ( ) )

re turn ( r )

def r u l e ( s e l f , DPB ) :
r and = np . random . un i fo rm ( low= 0 . , h igh = 1 . , s i z e = 1)
## I n i t i a l i z a t i o n : c r e a t e a new r u l e
i f ( s e l f . n i = = 0 ) :
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s e l f . r u l e s . append ( s e l f . new_ru le (DPB ) )
s e l f . n i = 1
s e l f . c o u n t = np . ones ( 1 )
re turn ( s e l f . r u l e s [ 0 ] )

e l s e :
r and = np . random . un i fo rm ( low= 0 . , h igh = 1 . ,

s i z e = 1)
l b = 0
f o r i in range ( l e n ( s e l f . r u l e s ) ) :

i f rand <( l b + s e l f . c o u n t [ i ] / ( s e l f . n i + s e l f . a l p h a 1 ) ) :
## I n c r e m e n t t h e c o u n t i n g f o r t h e s p e c i f i e d r u l e
s e l f . c o u n t [ i ] +=1
s e l f . n i +=1
re turn ( s e l f . r u l e s [ i ] )
break

l b += s e l f . c o u n t [ i ] / ( s e l f . n i + s e l f . a l p h a 1 )
r = s e l f . new_ru le (DPB)
s e l f . r u l e s . append ( r )
s e l f . c o u n t = np . append ( s e l f . count , 1 )
re turn ( r )

c l a s s S e n t e n c e _ r e g :
" D e f i n i t i o n o f a grammar p r o d u c i n g a "
" s e n t e n c e − w i t h o u t words , j u s t i t s c o n s t r u c t i o n "

def _ _ i n i t _ _ ( s e l f , DPB, DP_i , p , a lpha , a lpha1 , a p p e a r e d ) :
s e l f . l e n = 0
s e l f . s t a c k = np . ones ( 1 )
s e l f . DPB = DPB
s e l f . DP_i = DP_i ## l i s t o f DP f o r t h e r u l e s
s e l f . p = p
s e l f . a l p h a = a l p h a
s e l f . a l p h a 1 = a l p h a 1
s e l f . a p p e a r e d = a p p e a r e d

def n e x t _ s t e p ( s e l f ) :
i f s e l f . s t a c k . s i z e == 0 :

# p r i n t ( ' S e n t e n c e over ' )
re turn ( F a l s e )

i f s e l f . l e n == 200 :
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p r i n t ( ' S e n t e n c e i n f i n i t e ' )
re turn ( F a l s e )

e l s e :
## I f t h e v a r i a b l e has appeared
i f s e l f . s t a c k [ 0 ] in s e l f . a p p e a r e d :

c u r r e n t = s e l f . s t a c k [ 0 ]
i n d e x = s e l f . a p p e a r e d . i n d e x ( c u r r e n t )
## Take t h e DP a s s o c i a t e d w i t h t h a t
## v a r i a b l e and g e n e r a t e a r u l e
aux = s e l f . DP_i [ i n d e x ] . r u l e ( s e l f . DPB)
## A c t u a l i z e t h e s t a c k
s e l f . s t a c k = np . i n s e r t ( s e l f . s t a c k [ 1 : ] , 0 , aux )
## i n c r e m e n t t h e l e n g t h o f t h e s e n t e n c e
s e l f . l e n += 1

e l s e :
c u r r e n t = s e l f . s t a c k [ 0 ]
## A c t u a l i z e t h e appeared l i s t o f
## a l r e a d y seen v a r i a b l e s
s e l f . a p p e a r e d . append ( c u r r e n t )
## A c t u a l i z e t h e l i s t o f DP o f r u l e s a c c o r d i n g l y
s e l f . DP_i . append ( DP_rules_Reg ( a l p h a 1 = s e l f . a lpha1 ,

i = c u r r e n t ,
p = s e l f . p ) )

## A c t u a l i z e t h e s t a c k and t h e l e n g t h
i n d e x = s e l f . a p p e a r e d . i n d e x ( c u r r e n t )
aux = s e l f . DP_i [ i n d e x ] . r u l e ( s e l f . DPB)
s e l f . s t a c k = np . i n s e r t ( s e l f . s t a c k [ 1 : ] , 0 , aux )
s e l f . l e n += 1

re turn ( True )

### S i m u l a t i o n Par t

a l p h a 0 v e c = [ 1 , 5 , 1 0 ]

a l p h a 1 v e c = [ 1 , 5 , 1 0 ]
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lambvec = np . l i n s p a c e ( s t a r t = 0 . 2 , s t o p = 0 . 4 , num = 3)

m_res = np . z e r o s ( ( 3 , 3 , 3 ) )
qm95 = np . z e r o s ( ( 3 , 3 , 3 ) )
qm5 = np . z e r o s ( ( 3 , 3 , 3 ) )
s d _ r e s = np . z e r o s ( ( 3 , 3 , 3 ) )
qsd95 = np . z e r o s ( ( 3 , 3 , 3 ) )
qsd5 = np . z e r o s ( ( 3 , 3 , 3 ) )
p _ r e s = np . z e r o s ( ( 3 , 3 , 3 ) )
med_res = np . z e r o s ( ( 3 , 3 , 3 ) )
N_dp = 500

f o r i 1 in range ( 3 ) :
f o r i 2 in range ( 3 ) :

f o r i 3 in range ( 3 ) :
maux = l i s t ( )
sdaux = l i s t ( )
medaux = l i s t ( )
paux = l i s t ( )
f o r l in range ( N_dp ) :

a = a l p h a 0 v e c [ i 1 ]
a1 = a l p h a 0 v e c [ i 2 ]
lam = lambvec [ i 3 ]

DPB99 = DP_B( a l p h a = a )
s e n t e n c e = S e n t e n c e (DPB= DPB99 ,

DP_i = l i s t ( ) ,
lambd = lam ,
a l p h a = a ,
a l p h a 1 = a1 ,
a p p e a r e d = l i s t ( ) )

i =0
whi le ( s e n t e n c e . n e x t _ s t e p ( ) ) :

i +=1

N = 3000
l e n g t h s _ r e s = l i s t ( )
l e n g t h s _ a l l = l i s t ( )
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f o r k in range (N ) :
s e n t e n c e = S e n t e n c e (DPB= DPB99 ,

DP_i = s e n t e n c e . DP_i ,
lambd = lam ,

a l p h a = a ,
a l p h a 1 = a1 ,

a p p e a r e d = s e n t e n c e . a p p e a r e d )

i =0
whi le ( s e n t e n c e . n e x t _ s t e p ( ) ) :

i +=1
l e n g t h s _ a l l . append ( s e n t e n c e . l e n )
i f s e n t e n c e . l e n ! = 1 0 0 :

l e n g t h s _ r e s . append ( s e n t e n c e . l e n )
maux . append ( np . mean ( l e n g t h s _ r e s ) )
sdaux . append ( np . s t d ( l e n g t h s _ r e s ) )
medaux . append ( np . median ( l e n g t h s _ a l l ) )
paux . append ( l e n ( l e n g t h s _ r e s ) / N)

p _ r e s [ i1 , i2 , i 3 ] = np . mean ( paux )
m_res [ i1 , i2 , i 3 ] = np . mean ( maux )
qm95 [ i1 , i2 , i 3 ] = np . q u a n t i l e ( maux , 0 . 9 7 5 )
qm5 [ i1 , i2 , i 3 ] = np . q u a n t i l e ( maux , 0 . 0 2 5 )
s d _ r e s [ i1 , i2 , i 3 ] = np . mean ( sdaux )
qsd95 [ i1 , i2 , i 3 ] = np . q u a n t i l e ( sdaux , 0 . 9 7 5 )
qsd5 [ i1 , i2 , i 3 ] = np . q u a n t i l e ( sdaux , 0 . 0 2 5 )
med_res [ i1 , i2 , i 3 ] = np . mean ( medaux )

c o l o r s = [ ' b ' , ' g ' , ' r ' , ' c ' , 'm ' , ' y ' ]
fm = p l t . f i g u r e ( )
f o r i in range ( 3 ) :

p l t . p l o t ( a lpha0vec , m_res [ : , 0 , i ] , c = c o l o r s [ i ] )
p l t . e r r o r b a r ( a lpha0vec , m_res [ : , 0 , i ] ,

y e r r = np . v s t a c k ( ( qm5 [ : , 0 , i ] , qm95 [ : , 0 , i ] ) ) ,
c = c o l o r s [ i ] )

p l t . p l o t ( a lpha0vec , m_res [ : , 2 , i ] , c = c o l o r s [ i ] , l s = ' : ' )
p l t . e r r o r b a r ( a lpha0vec , m_res [ : , 2 , i ] ,

y e r r = np . v s t a c k ( ( qm5 [ : , 2 , i ] , qm95 [ : , 2 , i ] ) ) ,
c = c o l o r s [ i ] , l s = ' : ' )
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p l t . l e g e n d ( ( 'M2=1 , lam =0.2 ' , 'M2=10 , lam =0 .2 ' ,
'M2=1 , lam =0.3 ' , 'M2=10 , lam =0 .3 ' ,
'M2=1 , lam =0.4 ' , 'M2=10 , lam =0 .4 ' ) )

p l t . t i t l e ( ' Length e x p e c t a t i o n g i v e n t h e s e n t e n c e i s f i n i t e ( L<100) ' )
p l t . x l a b e l ( 'M1 ( C o n s t a n t o f t h e DP f o r t h e Bi ) ' )
p l t . y l a b e l ( ' Length e x p e c t a t i o n ' )

p l t . show ( )

f o r i in range ( 3 ) :
p l t . p l o t ( a lpha0vec , med_res [ : , 0 , i ] , c = c o l o r s [ i ] )
p l t . p l o t ( a lpha0vec , med_res [ : , 2 , i ] , c = c o l o r s [ i ] , l s = ' : ' )

p l t . l e g e n d ( ( 'M2=1 , lam =0.2 ' , 'M2=10 , lam =0 .2 ' ,
'M2=1 , lam =0.3 ' , 'M2=10 , lam =0 .3 ' ,
'M2=1 , lam =0.4 ' , 'M2=10 , lam =0 .4 ' ) )

p l t . t i t l e ( ' Length Median ' )
p l t . x l a b e l ( 'M1 ( C o n s t a n t o f t h e DP f o r t h e Bi ) ' )
p l t . y l a b e l ( ' Length Median ' )

p l t . show ( )

f o r i in range ( 3 ) :
p l t . p l o t ( a lpha0vec , p _ r e s [ : , 0 , i ] , c = c o l o r s [ i ] )
p l t . p l o t ( a lpha0vec , p _ r e s [ : , 2 , i ] , c = c o l o r s [ i ] , l s = ' : ' )

p l t . l e g e n d ( ( 'M2=1 , lam =0.2 ' , 'M2=10 , lam =0 .2 ' ,
'M2=1 , lam =0.3 ' , 'M2=10 , lam =0 .3 ' ,
'M2=1 , lam =0.4 ' , 'M2=10 , lam =0 .4 ' ) )

p l t . t i t l e ( ' P r o b a b i l i t y o f e x t i n c t i o n ( L ( s e n t e n c e ) <100) ' )
p l t . x l a b e l ( 'M1 ( C o n s t a n t o f t h e DP f o r t h e Bi ) ' )
p l t . y l a b e l ( ' P r o b a b i l i t y o f e x t i n c t i o n ' )

p l t . show ( )
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### S i m u l a t i o n Par t

a l p h a 0 v e c = [ 1 , 5 , 1 0 ]

a l p h a 1 v e c = [ 1 , 5 , 1 0 ]

lambvec = np . l i n s p a c e ( s t a r t = 0 . 3 , s t o p = 0 . 5 , num = 3)

m_res = np . z e r o s ( ( 3 , 3 , 3 ) )
qm95 = np . z e r o s ( ( 3 , 3 , 3 ) )
qm5 = np . z e r o s ( ( 3 , 3 , 3 ) )
s d _ r e s = np . z e r o s ( ( 3 , 3 , 3 ) )
qsd95 = np . z e r o s ( ( 3 , 3 , 3 ) )
qsd5 = np . z e r o s ( ( 3 , 3 , 3 ) )
p _ r e s = np . z e r o s ( ( 3 , 3 , 3 ) )
med_res = np . z e r o s ( ( 3 , 3 , 3 ) )
N_dp = 200

f o r i 1 in range ( 3 ) :
f o r i 2 in range ( 3 ) :

f o r i 3 in range ( 3 ) :
maux = l i s t ( )
sdaux = l i s t ( )
medaux = l i s t ( )
f o r l in range ( N_dp ) :

a = a l p h a 0 v e c [ i 1 ]
a1 = a l p h a 0 v e c [ i 2 ]
lam = lambvec [ i 3 ]

DPB99 = DP_B( a l p h a = a )
s e n t e n c e = S e n t e n c e _ r e g (DPB= DPB99 ,

DP_i = l i s t ( ) ,
p = lam ,
a l p h a = a ,
a l p h a 1 = a1 ,
a p p e a r e d = l i s t ( ) )

i =0
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whi le ( s e n t e n c e . n e x t _ s t e p ( ) ) :
i +=1

N = 1000
l e n g t h s _ r e s = l i s t ( )
l e n g t h s _ a l l = l i s t ( )
f o r k in range (N ) :

s e n t e n c e = S e n t e n c e _ r e g (DPB= s e n t e n c e . DPB,
DP_i = s e n t e n c e . DP_i ,
p = lam ,
a l p h a = a ,
a l p h a 1 = a1 ,

a p p e a r e d = s e n t e n c e . a p p e a r e d )
i =0
whi le ( s e n t e n c e . n e x t _ s t e p ( ) ) :

i +=1
l e n g t h s _ a l l . append ( s e n t e n c e . l e n )
i f s e n t e n c e . l e n ! = 1 0 0 :

l e n g t h s _ r e s . append ( s e n t e n c e . l e n )
maux . append ( np . mean ( l e n g t h s _ r e s ) )
sdaux . append ( np . s t d ( l e n g t h s _ r e s ) )
medaux . append ( np . median ( l e n g t h s _ a l l ) )

m_res [ i1 , i2 , i 3 ] = np . mean ( maux )
qm95 [ i1 , i2 , i 3 ] = np . q u a n t i l e ( maux , 0 . 9 7 5 )
qm5 [ i1 , i2 , i 3 ] = np . q u a n t i l e ( maux , 0 . 0 2 5 )
s d _ r e s [ i1 , i2 , i 3 ] = np . mean ( sdaux )
qsd95 [ i1 , i2 , i 3 ] = np . q u a n t i l e ( sdaux , 0 . 9 7 5 )
qsd5 [ i1 , i2 , i 3 ] = np . q u a n t i l e ( sdaux , 0 . 0 2 5 )
med_res [ i1 , i2 , i 3 ] = np . mean ( medaux )
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c o l o r s = [ ' b ' , ' g ' , ' r ' , ' c ' , 'm ' , ' y ' ]
fm = p l t . f i g u r e ( )
f o r i in range ( 3 ) :

p l t . p l o t ( a lpha0vec , m_res [ : , 0 , i ] , c = c o l o r s [ i ] )
p l t . e r r o r b a r ( a lpha0vec , m_res [ : , 0 , i ] ,

y e r r = np . v s t a c k ( ( qm5 [ : , 0 , i ] , qm95 [ : , 0 , i ] ) ) ,
c = c o l o r s [ i ] )

p l t . p l o t ( a lpha0vec , m_res [ : , 2 , i ] , c = c o l o r s [ i ] , l s = ' : ' )
p l t . e r r o r b a r ( a lpha0vec , m_res [ : , 2 , i ] ,

y e r r = np . v s t a c k ( ( qm5 [ : , 2 , i ] , qm95 [ : , 2 , i ] ) ) ,
c = c o l o r s [ i ] , l s = ' : ' )

p l t . l e g e n d ( ( 'M2=1 , p =0 .3 ' , 'M2=10 , p =0 .3 ' ,
'M2=1 , p =0 .4 ' , 'M2=10 , p =0 .4 ' ,
'M2=1 , p =0 .5 ' , 'M2=10 , p =0 .5 ' ) )

p l t . t i t l e ( ' Length e x p e c t a t i o n ' )
p l t . x l a b e l ( 'M1 ( C o n s t a n t o f t h e DP f o r t h e Bi ) ' )
p l t . y l a b e l ( ' Length e x p e c t a t i o n ' )

p l t . show ( )

f o r i in range ( 3 ) :
p l t . p l o t ( a lpha0vec , med_res [ : , 0 , i ] , c = c o l o r s [ i ] )
p l t . p l o t ( a lpha0vec , med_res [ : , 2 , i ] , c = c o l o r s [ i ] , l s = ' : ' )

p l t . l e g e n d ( ( 'M2=1 , p =0 .3 ' , 'M2=10 , p =0 .3 ' ,
'M2=1 , p =0 .4 ' , 'M2=10 , p =0 .4 ' ,
'M2=1 , p =0 .5 ' , 'M2=10 , p =0 .5 ' ) )

p l t . t i t l e ( ' Length Median ' )
p l t . x l a b e l ( 'M1 ( C o n s t a n t o f t h e DP f o r t h e Bi ) ' )
p l t . y l a b e l ( ' Length Median ' )

p l t . show ( )
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